Final value theorem

Last updated

In mathematical analysis, the final value theorem (FVT) is one of several similar theorems used to relate frequency domain expressions to the time domain behavior as time approaches infinity. [1] [2] [3] [4] Mathematically, if in continuous time has (unilateral) Laplace transform , then a final value theorem establishes conditions under which

Contents

Likewise, if in discrete time has (unilateral) Z-transform , then a final value theorem establishes conditions under which

An Abelian final value theorem makes assumptions about the time-domain behavior of (or ) to calculate . Conversely, a Tauberian final value theorem makes assumptions about the frequency-domain behaviour of to calculate (or ) (see Abelian and Tauberian theorems for integral transforms).

Final value theorems for the Laplace transform

Deducing limt → ∞f(t)

In the following statements, the notation '' means that approaches 0, whereas '' means that approaches 0 through the positive numbers.

Standard Final Value Theorem

Suppose that every pole of is either in the open left half plane or at the origin, and that has at most a single pole at the origin. Then as , and . [5]

Final Value Theorem using Laplace transform of the derivative

Suppose that and both have Laplace transforms that exist for all . If exists and exists then . [3] :Theorem 2.36 [4] :20 [6]

Remark

Both limits must exist for the theorem to hold. For example, if then does not exist, but . [3] :Example 2.37 [4] :20

Improved Tauberian converse Final Value Theorem

Suppose that is bounded and differentiable, and that is also bounded on . If as then . [7]

Extended Final Value Theorem

Suppose that every pole of is either in the open left half-plane or at the origin. Then one of the following occurs:

  1. as , and .
  2. as , and as .
  3. as , and as .

In particular, if is a multiple pole of then case 2 or 3 applies ( or ). [5]

Generalized Final Value Theorem

Suppose that is Laplace transformable. Let . If exists and exists then

where denotes the Gamma function. [5]

Applications

Final value theorems for obtaining have applications in establishing the long-term stability of a system.

Deducing lims → 0sF(s)

Abelian Final Value Theorem

Suppose that is bounded and measurable and . Then exists for all and . [7]

Elementary proof [7]

Suppose for convenience that on , and let . Let , and choose so that for all . Since , for every we have

hence

Now for every we have

.

On the other hand, since is fixed it is clear that , and so if is small enough.

Final Value Theorem using Laplace transform of the derivative

Suppose that all of the following conditions are satisfied:

  1. is continuously differentiable and both and have a Laplace transform
  2. is absolutely integrable - that is, is finite
  3. exists and is finite

Then

. [8]

Remark

The proof uses the dominated convergence theorem. [8]

Final Value Theorem for the mean of a function

Let be a continuous and bounded function such that such that the following limit exists

Then . [9]

Final Value Theorem for asymptotic sums of periodic functions

Suppose that is continuous and absolutely integrable in . Suppose further that is asymptotically equal to a finite sum of periodic functions , that is

where is absolutely integrable in and vanishes at infinity. Then

. [10]

Final Value Theorem for a function that diverges to infinity

Let and be the Laplace transform of . Suppose that satisfies all of the following conditions:

  1. is infinitely differentiable at zero
  2. has a Laplace transform for all non-negative integers
  3. diverges to infinity as

Then diverges to infinity as . [11]

Final Value Theorem for improperly integrable functions (Abel's theorem for integrals)

Let be measurable and such that the (possibly improper) integral converges for . Then

This is a version of Abel's theorem.

To see this, notice that and apply the final value theorem to after an integration by parts: For ,

By the final value theorem, the left-hand side converges to for .

To establish the convergence of the improper integral in practice, Dirichlet's test for improper integrals is often helpful. An example is the Dirichlet integral.

Applications

Final value theorems for obtaining have applications in probability and statistics to calculate the moments of a random variable. Let be cumulative distribution function of a continuous random variable and let be the Laplace–Stieltjes transform of . Then the -th moment of can be calculated as

The strategy is to write

where is continuous and for each , for a function . For each , put as the inverse Laplace transform of , obtain , and apply a final value theorem to deduce . Then

and hence is obtained.

Examples

Example where FVT holds

For example, for a system described by transfer function

the impulse response converges to

That is, the system returns to zero after being disturbed by a short impulse. However, the Laplace transform of the unit step response is

and so the step response converges to

So a zero-state system will follow an exponential rise to a final value of 3.

Example where FVT does not hold

For a system described by the transfer function

the final value theorem appears to predict the final value of the impulse response to be 0 and the final value of the step response to be 1. However, neither time-domain limit exists, and so the final value theorem predictions are not valid. In fact, both the impulse response and step response oscillate, and (in this special case) the final value theorem describes the average values around which the responses oscillate.

There are two checks performed in Control theory which confirm valid results for the Final Value Theorem:

  1. All non-zero roots of the denominator of must have negative real parts.
  2. must not have more than one pole at the origin.

Rule 1 was not satisfied in this example, in that the roots of the denominator are and .

Final value theorems for the Z transform

Deducing limk → ∞f[k]

Final Value Theorem

If exists and exists then . [4] :101

Final value of linear systems

Continuous-time LTI systems

Final value of the system

in response to a step input with amplitude is:

Sampled-data systems

The sampled-data system of the above continuous-time LTI system at the aperiodic sampling times is the discrete-time system

where and

,

The final value of this system in response to a step input with amplitude is the same as the final value of its original continuous-time system. [12]

See also

Notes

  1. Wang, Ruye (2010-02-17). "Initial and Final Value Theorems" . Retrieved 2011-10-21.
  2. Alan V. Oppenheim; Alan S. Willsky; S. Hamid Nawab (1997). Signals & Systems. New Jersey, USA: Prentice Hall. ISBN   0-13-814757-4.
  3. 1 2 3 Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. New York: Springer. ISBN   978-1-4757-7262-3.
  4. 1 2 3 4 Graf, Urs (2004). Applied Laplace Transforms and z-Transforms for Scientists and Engineers. Basel: Birkhäuser Verlag. ISBN   3-7643-2427-9.
  5. 1 2 3 Chen, Jie; Lundberg, Kent H.; Davison, Daniel E.; Bernstein, Dennis S. (June 2007). "The Final Value Theorem Revisited - Infinite Limits and Irrational Function". IEEE Control Systems Magazine. 27 (3): 97–99. doi:10.1109/MCS.2007.365008.
  6. "Final Value Theorem of Laplace Transform". ProofWiki. Retrieved 12 April 2020.
  7. 1 2 3 Ullrich, David C. (2018-05-26). "The tauberian final value Theorem". Math Stack Exchange.
  8. 1 2 Sopasakis, Pantelis (2019-05-18). "A proof for the Final Value theorem using Dominated convergence theorem". Math Stack Exchange.
  9. Murthy, Kavi Rama (2019-05-07). "Alternative version of the Final Value theorem for Laplace Transform". Math Stack Exchange.
  10. Gluskin, Emanuel (1 November 2003). "Let us teach this generalization of the final-value theorem". European Journal of Physics. 24 (6): 591–597. doi:10.1088/0143-0807/24/6/005.
  11. Hew, Patrick (2020-04-22). "Final Value Theorem for function that diverges to infinity?". Math Stack Exchange.
  12. Mohajeri, Kamran; Madadi, Ali; Tavassoli, Babak (2021). "Tracking Control with Aperiodic Sampling over Networks with Delay and Dropout". International Journal of Systems Science. 52 (10): 1987–2002. doi:10.1080/00207721.2021.1874074.

Related Research Articles

In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Heaviside step function</span> Indicator function of positive numbers

The Heaviside step function, or the unit step function, usually denoted by H or θ, is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for nonnegative arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one.

The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

<span class="mw-page-title-main">Dirichlet integral</span> Integral of sin(x)/x from 0 to infinity.

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f(t) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

In mathematics, Borel summation is a summation method for divergent series, introduced by Émile Borel. It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

In mathematics, in the area of complex analysis, Nachbin's theorem is commonly used to establish a bound on the growth rates for an analytic function. This article provides a brief review of growth rates, including the idea of a function of exponential type. Classification of growth rates based on type help provide a finer tool than big O or Landau notation, since a number of theorems about the analytic structure of the bounded function and its integral transforms can be stated. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, given below.

In mathematical analysis, the initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.

In mathematical analysis, Haar's Tauberian theorem named after Alfréd Haar, relates the asymptotic behaviour of a continuous function to properties of its Laplace transform. It is related to the integral formulation of the Hardy–Littlewood Tauberian theorem.