Frequency domain

Last updated
The Fourier transform converts the function's time-domain representation, shown in red, to the function's frequency-domain representation, shown in blue. The component frequencies, spread across the frequency spectrum, are represented as peaks in the frequency domain. Fourier transform time and frequency domains (small).gif
The Fourier transform converts the function's time-domain representation, shown in red, to the function's frequency-domain representation, shown in blue. The component frequencies, spread across the frequency spectrum, are represented as peaks in the frequency domain.

In physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. [1] Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal.

Contents

A given function or signal can be converted between the time and frequency domains with a pair of mathematical operators called transforms. An example is the Fourier transform, which converts a time function into a sum or integral of sine waves of different frequencies, each of which represents a frequency component. The "spectrum" of frequency components is the frequency-domain representation of the signal. The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain.

Some specialized signal processing techniques use transforms that result in a joint time–frequency domain, with the instantaneous frequency being a key link between the time domain and the frequency domain.

Advantages

One of the main reasons for using a frequency-domain representation of a problem is to simplify the mathematical analysis. For mathematical systems governed by linear differential equations, a very important class of systems with many real-world applications, converting the description of the system from the time domain to a frequency domain converts the differential equations to algebraic equations, which are much easier to solve.

In addition, looking at a system from the point of view of frequency can often give an intuitive understanding of the qualitative behavior of the system, and a revealing scientific nomenclature has grown up to describe it, characterizing the behavior of physical systems to time varying inputs using terms such as bandwidth, frequency response, gain, phase shift, resonant frequencies, time constant, resonance width, damping factor, Q factor, harmonics, spectrum, power spectral density, eigenvalues, poles, and zeros.

An example of a field in which frequency-domain analysis gives a better understanding than time domain is music; the theory of operation of musical instruments and the musical notation used to record and discuss pieces of music is implicitly based on the breaking down of complex sounds into their separate component frequencies (musical notes).

Magnitude and phase

In using the Laplace, Z-, or Fourier transforms, a signal is described by a complex function of frequency: the component of the signal at any given frequency is given by a complex number. The modulus of the number is the amplitude of that component, and the argument is the relative phase of the wave. For example, using the Fourier transform, a sound wave, such as human speech, can be broken down into its component tones of different frequencies, each represented by a sine wave of a different amplitude and phase. The response of a system, as a function of frequency, can also be described by a complex function. In many applications, phase information is not important. By discarding the phase information, it is possible to simplify the information in a frequency-domain representation to generate a frequency spectrum or spectral density. A spectrum analyzer is a device that displays the spectrum, while the time-domain signal can be seen on an oscilloscope.

Types

Although "the" frequency domain is spoken of in the singular, there are a number of different mathematical transforms which are used to analyze time-domain functions and are referred to as "frequency domain" methods. These are the most common transforms, and the fields in which they are used:

More generally, one can speak of the transform domain with respect to any transform. The above transforms can be interpreted as capturing some form of frequency, and hence the transform domain is referred to as a frequency domain.

Discrete frequency domain

The Fourier transform of a periodic signal has energy only at a base frequency and its harmonics. Another way of saying this is that a periodic signal can be analyzed using a discrete frequency domain. Dually, a discrete-time signal gives rise to a periodic frequency spectrum. Combining these two, if we start with a time signal which is both discrete and periodic, we get a frequency spectrum which is also both discrete and periodic. This is the usual context for a discrete Fourier transform.

History of term

The use of the terms "frequency domain" and "time domain" arose in communication engineering in the 1950s and early 1960s, with "frequency domain" appearing in 1953. [2] See time domain: origin of term for details. [3]

See also

Related Research Articles

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.

Discrete Fourier transform

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

Fourier analysis Branch of mathematics

In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

Harmonic analysis Study of superpositions in mathematics

Harmonic analysis is a branch of mathematics concerned with the representation of functions or signals as the superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms. In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience.

Wavelet Function for integral Fourier-like transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing.

Fourier transform Mathematical transform that expresses a function of time as a function of frequency

In mathematics, a Fourier transform (FT) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain representation.

Spectral density Relative importance of certain frequencies in a composite signal

The power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal as analyzed in terms of its frequency content, is called its spectrum.

Deconvolution

In mathematics, deconvolution is the operation inverse to convolution. Both operations are used in signal processing and image processing. For example, convolution can be used to apply a filter, and it may be possible to recover the original signal using deconvolution.

Signal Varying physical quantity that conveys information

In signal processing, a signal is a function that conveys information about a phenomenon. In electronics and telecommunications, it refers to any time varying voltage, current, or electromagnetic wave that carries information. A signal may also be defined as an observable change in a quality such as quantity.

A time–frequency representation (TFR) is a view of a signal represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD.

In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

Stransform as a time–frequency distribution was developed in 1994 for analyzing geophysics data. In this way, the S transform is a generalization of the short-time Fourier transform (STFT), extending the continuous wavelet transform and overcoming some of its disadvantages. For one, modulation sinusoids are fixed with respect to the time axis; this localizes the scalable Gaussian window dilations and translations in S transform. Moreover, the S transform doesn't have a cross-term problem and yields a better signal clarity than Gabor transform. However, the S transform has its own disadvantages: the clarity is worse than Wigner distribution function and Cohen's class distribution function.

Chirplet transform

In signal processing, the chirplet transform is an inner product of an input signal with a family of analysis primitives called chirplets.

In mathematics and engineering, the s-plane is the complex plane on which Laplace transforms are graphed. It is a mathematical domain where, instead of viewing processes in the time domain modeled with time-based functions, they are viewed as equations in the frequency domain. It is used as a graphical analysis tool in engineering and physics.

Wavelet transform Mathematical technique used in data compression and analysis

In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.

Gabor transform

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

Geophysical survey is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure. Hence, detection and analysis of the electric and Magnetic fields is very crucial. As the Electromagnetic and gravitational waves are multi-dimensional signals, all the 1-D transformation techniques can be extended for the analysis of these signals as well. Hence this article also discusses multi-dimensional signal processing techniques.

In statistical signal processing, the goal of spectral density estimation (SDE) is to estimate the spectral density of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

References

  1. Broughton, S. A.; Bryan, K. (2008). Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing. New York: Wiley. p. 72.
  2. Zadeh, L. A. (1953), "Theory of Filtering", Journal of the Society for Industrial and Applied Mathematics, 1: 35–51, doi:10.1137/0101003
  3. Earliest Known Uses of Some of the Words of Mathematics (T), Jeff Miller, March 25, 2009

Goldshleger, N., Shamir, O., Basson, U., Zaady, E. (2019). Frequency Domain Electromagnetic Method (FDEM) as tool to study contamination at the sub-soil layer. Geoscience 9 (9), 382.

Further reading