This article needs additional citations for verification .(January 2010) |
In mathematics, an algebraic equation or polynomial equation is an equation of the form
where P is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term algebraic equation refers only to univariate equations, that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the multivariate case), the term polynomial equation is usually preferred to algebraic equation.
For example,
is an algebraic equation with integer coefficients and
is a multivariate polynomial equation over the rationals.
Some but not all polynomial equations with rational coefficients have a solution that is an algebraic expression that can be found using a finite number of operations that involve only those same types of coefficients (that is, can be solved algebraically). This can be done for all such equations of degree one, two, three, or four; but for degree five or more it can only be done for some equations, not all. A large amount of research has been devoted to compute efficiently accurate approximations of the real or complex solutions of a univariate algebraic equation (see Root-finding algorithm) and of the common solutions of several multivariate polynomial equations (see System of polynomial equations).
The term "algebraic equation" dates from the time when the main problem of algebra was to solve univariate polynomial equations. This problem was completely solved during the 19th century; see Fundamental theorem of algebra, Abel–Ruffini theorem and Galois theory.
Since then, the scope of algebra has been dramatically enlarged. In particular, it includes the study of equations that involve nth roots and, more generally, algebraic expressions. This makes the term algebraic equation ambiguous outside the context of the old problem. So the term polynomial equation is generally preferred when this ambiguity may occur, specially when considering multivariate equations.
The study of algebraic equations is probably as old as mathematics: the Babylonian mathematicians, as early as 2000 BC could solve some kinds of quadratic equations (displayed on Old Babylonian clay tablets).
Univariate algebraic equations over the rationals (i.e., with rational coefficients) have a very long history. Ancient mathematicians wanted the solutions in the form of radical expressions, like for the positive solution of . The ancient Egyptians knew how to solve equations of degree 2 in this manner. The Indian mathematician Brahmagupta (597–668 AD) explicitly described the quadratic formula in his treatise Brāhmasphuṭasiddhānta published in 628 AD, but written in words instead of symbols. In the 9th century Muhammad ibn Musa al-Khwarizmi and other Islamic mathematicians derived the quadratic formula, the general solution of equations of degree 2, and recognized the importance of the discriminant. During the Renaissance in 1545, Gerolamo Cardano published the solution of Scipione del Ferro and Niccolò Fontana Tartaglia to equations of degree 3 and that of Lodovico Ferrari for equations of degree 4. Finally Niels Henrik Abel proved, in 1824, that equations of degree 5 and higher do not have general solutions using radicals. Galois theory, named after Évariste Galois, showed that some equations of at least degree 5 do not even have an idiosyncratic solution in radicals, and gave criteria for deciding if an equation is in fact solvable using radicals.
The algebraic equations are the basis of a number of areas of modern mathematics: Algebraic number theory is the study of (univariate) algebraic equations over the rationals (that is, with rational coefficients). Galois theory was introduced by Évariste Galois to specify criteria for deciding if an algebraic equation may be solved in terms of radicals. In field theory, an algebraic extension is an extension such that every element is a root of an algebraic equation over the base field. Transcendental number theory is the study of the real numbers which are not solutions to an algebraic equation over the rationals. A Diophantine equation is a (usually multivariate) polynomial equation with integer coefficients for which one is interested in the integer solutions. Algebraic geometry is the study of the solutions in an algebraically closed field of multivariate polynomial equations.
Two equations are equivalent if they have the same set of solutions. In particular the equation is equivalent to . It follows that the study of algebraic equations is equivalent to the study of polynomials.
A polynomial equation over the rationals can always be converted to an equivalent one in which the coefficients are integers. For example, multiplying through by 42 = 2·3·7 and grouping its terms in the first member, the previously mentioned polynomial equation becomes
Because sine, exponentiation, and 1/T are not polynomial functions,
is not a polynomial equation in the four variables x, y, z, and T over the rational numbers. However, it is a polynomial equation in the three variables x, y, and z over the field of the elementary functions in the variable T.
Given an equation in unknown x
with coefficients in a field K, one can equivalently say that the solutions of (E) in K are the roots in K of the polynomial
It can be shown that a polynomial of degree n in a field has at most n roots. The equation (E) therefore has at most n solutions.
If K' is a field extension of K, one may consider (E) to be an equation with coefficients in K and the solutions of (E) in K are also solutions in K' (the converse does not hold in general). It is always possible to find a field extension of K known as the rupture field of the polynomial P, in which (E) has at least one solution.
The fundamental theorem of algebra states that the field of the complex numbers is closed algebraically, that is, all polynomial equations with complex coefficients and degree at least one have a solution.
It follows that all polynomial equations of degree 1 or more with real coefficients have a complex solution. On the other hand, an equation such as does not have a solution in (the solutions are the imaginary units i and –i).
While the real solutions of real equations are intuitive (they are the x-coordinates of the points where the curve y = P(x) intersects the x-axis), the existence of complex solutions to real equations can be surprising and less easy to visualize.
However, a monic polynomial of odd degree must necessarily have a real root. The associated polynomial function in x is continuous, and it approaches as x approaches and as x approaches . By the intermediate value theorem, it must therefore assume the value zero at some real x, which is then a solution of the polynomial equation.
There exist formulas giving the solutions of real or complex polynomials of degree less than or equal to four as a function of their coefficients. Abel showed that it is not possible to find such a formula in general (using only the four arithmetic operations and taking roots) for equations of degree five or higher. Galois theory provides a criterion which allows one to determine whether the solution to a given polynomial equation can be expressed using radicals.
The explicit solution of a real or complex equation of degree 1 is trivial. Solving an equation of higher degree n reduces to factoring the associated polynomial, that is, rewriting (E) in the form
where the solutions are then the . The problem is then to express the in terms of the .
This approach applies more generally if the coefficients and solutions belong to an integral domain.
If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form Xk – αk, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 equation Q(x) = 0. See for example the case n = 3.
To solve an equation of degree n,
a common preliminary step is to eliminate the degree-n - 1 term: by setting , equation (E) becomes
Leonhard Euler developed this technique for the case n = 3 but it is also applicable to the case n = 4, for example.
To solve a quadratic equation of the form one calculates the discriminant Δ defined by .
If the polynomial has real coefficients, it has:
The best-known method for solving cubic equations, by writing roots in terms of radicals, is Cardano's formula.
For detailed discussions of some solution methods see:
A quartic equation with may be reduced to a quadratic equation by a change of variable provided it is either biquadratic (b = d = 0) or quasi-palindromic (e = a, d = b).
Some cubic and quartic equations can be solved using trigonometry or hyperbolic functions.
Évariste Galois and Niels Henrik Abel showed independently that in general a polynomial of degree 5 or higher is not solvable using radicals. Some particular equations do have solutions, such as those associated with the cyclotomic polynomials of degrees 5 and 17.
Charles Hermite, on the other hand, showed that polynomials of degree 5 are solvable using elliptical functions.
Otherwise, one may find numerical approximations to the roots using root-finding algorithms, such as Newton's method.
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.
In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
In algebra, a quadratic equation is any equation that can be rearranged in standard form as
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.
In elementary algebra, the Śrīdhara Acharya's formula, also known as the quadratic formula, is a formula that provides the solution(s) to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring, completing the square, graphing and others.
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x2 – 4.
In mathematics, the Abel–Ruffini theorem states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates.
In algebra, a cubic equation in one variable is an equation of the form
In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In algebra, a quintic function is a function of the form
In algebra, a quartic function is a function of the form
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:
In mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations. For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression:
A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.