Tschirnhaus transformation

Last updated
Ehrenfried Walther von Tschirnhaus Tschirnhaus.jpg
Ehrenfried Walther von Tschirnhaus

In mathematics, a Tschirnhaus transformation, also known as Tschirnhausen transformation, is a type of mapping on polynomials developed by Ehrenfried Walther von Tschirnhaus in 1683. [1]

Contents

Simply, it is a method for transforming a polynomial equation of degree with some nonzero intermediate coefficients, , such that some or all of the transformed intermediate coefficients, , are exactly zero.

For example, finding a substitution

for a cubic equation of degree ,

such that substituting yields a new equation

such that , , or both.

More generally, it may be defined conveniently by means of field theory, as the transformation on minimal polynomials implied by a different choice of primitive element. This is the most general transformation of an irreducible polynomial that takes a root to some rational function applied to that root.

Definition

For a generic degree reducible monic polynomial equation of the form , where and are polynomials and does not vanish at ,

the Tschirnhaus transformation is the function:

Such that the new equation in , , has certain special properties, most commonly such that some coefficients, , are identically zero. [2] [3]

Example: Tschirnhaus' method for cubic equations

In Tschirnhaus' 1683 paper, [1] he solved the equation

using the Tschirnhaus transformation

Substituting yields the transformed equation

or

Setting

yields,

and finally the Tschirnhaus transformation

which may be substituted into to yield an equation of the form:

Tschirnhaus went on to describe how a Tschirnhaus transformation of the form:

may be used to eliminate two coefficients in a similar way.

Generalization

In detail, let be a field, and a polynomial over . If is irreducible, then the quotient ring of the polynomial ring by the principal ideal generated by ,

,

is a field extension of . We have

where is modulo . That is, any element of is a polynomial in , which is thus a primitive element of . There will be other choices of primitive element in : for any such choice of we will have by definition:

,

with polynomials and over . Now if is the minimal polynomial for over , we can call a Tschirnhaus transformation of .

Therefore the set of all Tschirnhaus transformations of an irreducible polynomial is to be described as running over all ways of changing , but leaving the same. This concept is used in reducing quintics to BringJerrard form, for example. There is a connection with Galois theory, when is a Galois extension of . The Galois group may then be considered as all the Tschirnhaus transformations of to itself.

History

In 1683, Ehrenfried Walther von Tschirnhaus published a method for rewriting a polynomial of degree such that the and terms have zero coefficients. In his paper, Tschirnhaus referenced a method by René Descartes to reduce a quadratic polynomial such that the term has zero coefficient.

In 1786, this work was expanded by Erland Samuel Bring who showed that any generic quintic polynomial could be similarly reduced.

In 1834, George Jerrard further expanded Tschirnhaus' work by showing a Tschirnhaus transformation may be used to eliminate the , , and for a general polynomial of degree . [3]

See also

Related Research Articles

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a formula that provides the two solutions, or roots, to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as completing the square.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

In mathematics, the Abel–Ruffini theorem states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates.

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

<span class="mw-page-title-main">Quintic function</span> Polynomial function of degree 5

In mathematics, a quintic function is a function of the form

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials.

<span class="mw-page-title-main">Lindemann–Weierstrass theorem</span> On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

In field theory, the primitive element theorem states that every finite separable extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

In mathematics, a polynomial transformation consists of computing the polynomial whose roots are a given function of the roots of a polynomial. Polynomial transformations such as Tschirnhaus transformations are often used to simplify the solution of algebraic equations.

<span class="mw-page-title-main">Septic equation</span> Polynomial equation of degree 7

In algebra, a septic equation is an equation of the form

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes in the presence of many errors. If a code has relative distance , then it is possible in principle to recover an encoded message when up to fraction of the codeword symbols are corrupted. But when error rate is greater than , this will not in general be possible. List decoding overcomes that issue by allowing the decoder to output a short list of messages that might have been encoded. List decoding can correct more than fraction of errors.

References

  1. 1 2 von Tschirnhaus, Ehrenfried Walter; Green, R. F. (2003-03-01). "A method for removing all intermediate terms from a given equation". ACM SIGSAM Bulletin. 37 (1): 1–3. doi: 10.1145/844076.844078 . ISSN   0163-5824. S2CID   18911887.
  2. Garver, Raymond (1927). "The Tschirnhaus Transformation". Annals of Mathematics. 29 (1/4): 319–333. doi:10.2307/1968002. ISSN   0003-486X. JSTOR   1968002.
  3. 1 2 C. B. Boyer (1968) A History of Mathematics. Wiley, New York pp. 472-473. As reported by: Weisstein, Eric W. "Tschirnhausen Transformation". mathworld.wolfram.com. Retrieved 2022-02-02.