Rational root theorem

Last updated

In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation

Contents

with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side.

The theorem states that each rational solution x = pq, written in lowest terms so that p and q are relatively prime, satisfies:

The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is an = 1.

Application

The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (xr) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.

Cubic equation

The general cubic equation

with integer coefficients has three solutions in the complex plane. If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (xr) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.

Proofs

Elementary proof

Let with

Suppose P(p/q) = 0 for some coprime p, q:

To clear denominators, multiply both sides by qn:

Shifting the a0 term to the right side and factoring out p on the left side produces:

Thus, p divides a0qn. But p is coprime to q and therefore to qn, so by Euclid's lemma p must divide the remaining factor a0.

On the other hand, shifting the an term to the right side and factoring out q on the left side produces:

Reasoning as before, it follows that q divides an. [1]

Proof using Gauss's lemma

Should there be a nontrivial factor dividing all the coefficients of the polynomial, then one can divide by the greatest common divisor of the coefficients so as to obtain a primitive polynomial in the sense of Gauss's lemma; this does not alter the set of rational roots and only strengthens the divisibility conditions. That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qxp, assuming that p and q are coprime. But any multiple in Z[X] of qxp has leading term divisible by q and constant term divisible by p, which proves the statement. This argument shows that more generally, any irreducible factor of P can be supposed to have integer coefficients, and leading and constant coefficients dividing the corresponding coefficients of P.

Examples

First

In the polynomial

any rational root fully reduced would have to have a numerator that divides evenly into 1 and a denominator that divides evenly into 2. Hence the only possible rational roots are ±1/2 and ±1; since neither of these equates the polynomial to zero, it has no rational roots.

Second

In the polynomial

the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

Third

Every rational root of the polynomial

must be among the numbers

These 8 root candidates x = r can be tested by evaluating P(r), for example using Horner's method. It turns out there is exactly one with P(r) = 0.

This process may be made more efficient: if P(r) ≠ 0, it can be used to shorten the list of remaining candidates. [2] For example, x = 1 does not work, as P(1) = 1. Substituting x = 1 + t yields a polynomial in t with constant term P(1) = 1, while the coefficient of t3 remains the same as the coefficient of x3. Applying the rational root theorem thus yields the possible roots , so that

True roots must occur on both lists, so list of rational root candidates has shrunk to just x = 2 and x = 2/3.

If k ≥ 1 rational roots are found, Horner's method will also yield a polynomial of degree nk whose roots, together with the rational roots, are exactly the roots of the original polynomial. If none of the candidates is a solution, there can be no rational solution.

See also

Notes

  1. Arnold, D.; Arnold, G. (1993). Four unit mathematics. Edward Arnold. pp. 120–121. ISBN   0-340-54335-3.
  2. King, Jeremy D. (November 2006). "Integer roots of polynomials". Mathematical Gazette. 90: 455–456. doi: 10.1017/S0025557200180295 .

Related Research Articles

<span class="mw-page-title-main">Algebraic number</span> Complex number that is a root of a non-zero polynomial in one variable with rational coefficients

An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.

The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In algebra, a monic polynomial is a non-zero univariate polynomial in which the leading coefficient is equal to 1. That is to say, a monic polynomial is one that can be written as

<span class="mw-page-title-main">Lindemann–Weierstrass theorem</span> On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients.

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

In mathematics, the Sturm sequence of a univariate polynomial p is a sequence of polynomials associated with p and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of p.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

In algebra, Gauss's lemma, named after Carl Friedrich Gauss, is a theorem about polynomials over the integers, or, more generally, over a unique factorization domain. Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials.

<span class="mw-page-title-main">Puiseux series</span> Power series with rational exponents

In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

References