Cubic function

Last updated
Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis--where y = 0). The case shown has two critical points. Here the function is f(x) = (x + 3x - 6x - 8)/4. Polynomialdeg3.svg
Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis—where y = 0). The case shown has two critical points. Here the function is f(x) = (x + 3x − 6x − 8)/4.

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

Contents

Setting f(x) = 0 produces a cubic equation of the form

whose solutions are called roots of the function. The derivative of a cubic function is a quadratic function.

A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root.

The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum. Otherwise, a cubic function is monotonic. The graph of a cubic function is symmetric with respect to its inflection point; that is, it is invariant under a rotation of a half turn around this point. Up to an affine transformation, there are only three possible graphs for cubic functions.

Cubic functions are fundamental for cubic interpolation.

History

Critical and inflection points

The roots, stationary points, inflection point and concavity of a cubic polynomial x - 6x + 9x - 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. Cubic graph special points repeated.svg
The roots, stationary points, inflection point and concavity of a cubic polynomial x − 6x + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives.

The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2] Thus the critical points of a cubic function f defined by

f(x) = ax3 + bx2 + cx + d,

occur at values of x such that the derivative

of the cubic function is zero.

The solutions of this equation are the x-values of the critical points and are given, using the quadratic formula, by

The sign of the expression Δ0 = b2 – 3ac inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum. If b2 – 3ac = 0, then there is only one critical point, which is an inflection point. If b2 – 3ac < 0, then there are no (real) critical points. In the two latter cases, that is, if b2 – 3ac is nonpositive, the cubic function is strictly monotonic. See the figure for an example of the case Δ0 > 0.

The inflection point of a function is where that function changes concavity. [3] An inflection point occurs when the second derivative is zero, and the third derivative is nonzero. Thus a cubic function has always a single inflection point, which occurs at

Classification

Cubic functions of the form
y
=
x
3
+
c
x
.
{\displaystyle y=x^{3}+cx.}

The graph of any cubic function is similar to such a curve. Cubic function (different c).svg
Cubic functions of the form
The graph of any cubic function is similar to such a curve.

The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions.

Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of the form

This similarity can be built as the composition of translations parallel to the coordinates axes, a homothecy (uniform scaling), and, possibly, a reflection (mirror image) with respect to the y-axis. A further non-uniform scaling can transform the graph into the graph of one among the three cubic functions

This means that there are only three graphs of cubic functions up to an affine transformation.

The above geometric transformations can be built in the following way, when starting from a general cubic function

Firstly, if a < 0, the change of variable x → –x allows supposing a > 0. After this change of variable, the new graph is the mirror image of the previous one, with respect of the y-axis.

Then, the change of variable x = x1b/3a provides a function of the form

This corresponds to a translation parallel to the x-axis.

The change of variable y = y1 + q corresponds to a translation with respect to the y-axis, and gives a function of the form

The change of variable corresponds to a uniform scaling, and give, after multiplication by a function of the form

which is the simplest form that can be obtained by a similarity.

Then, if p ≠ 0, the non-uniform scaling gives, after division by

where has the value 1 or –1, depending on the sign of p. If one defines the latter form of the function applies to all cases (with and ).

Symmetry

For a cubic function of the form the inflection point is thus the origin. As such a function is an odd function, its graph is symmetric with respect to the inflection point, and invariant under a rotation of a half turn around the inflection point. As these properties are invariant by similarity, the following is true for all cubic functions.

The graph of a cubic function is symmetric with respect to its inflection point, and is invariant under a rotation of a half turn around the inflection point.

Collinearities

The points P1, P2, and P3 (in blue) are collinear and belong to the graph of x +
3/2x -
5/2x +
5/4. The points T1, T2, and T3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too. Cubica colinear.png
The points P1, P2, and P3 (in blue) are collinear and belong to the graph of x + 3/2x5/2x + 5/4. The points T1, T2, and T3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.

The tangent lines to the graph of a cubic function at three collinear points intercept the cubic again at collinear points. [4] This can be seen as follows.

As this property is invariant under a rigid motion, one may suppose that the function has the form

If α is a real number, then the tangent to the graph of f at the point (α, f(α)) is the line

{(x, f(α) + (xα)f′(α)) : xR}.

So, the intersection point between this line and the graph of f can be obtained solving the equation f(x) = f(α) + (xα)f′(α), that is

which can be rewritten

and factorized as

So, the tangent intercepts the cubic at

So, the function that maps a point (x, y) of the graph to the other point where the tangent intercepts the graph is

This is an affine transformation that transforms collinear points into collinear points. This proves the claimed result.

Cubic interpolation

Given the values of a function and its derivative at two points, there is exactly one cubic function that has the same four values, which is called a cubic Hermite spline.

There are two standard ways for using this fact. Firstly, if one knows, for example by physical measurement, the values of a function and its derivative at some sampling points, one can interpolate the function with a continuously differentiable function, which is a piecewise cubic function.

If the value of a function is known at several points, cubic interpolation consists in approximating the function by a continuously differentiable function, which is piecewise cubic. For having a uniquely defined interpolation, two more constraints must be added, such as the values of the derivatives at the endpoints, or a zero curvature at the endpoints.

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.

<span class="mw-page-title-main">Sigmoid function</span> Mathematical function having a characteristic S-shaped curve or sigmoid curve

A sigmoid function refers specifically to a function whose graph follows the logistic function. It is defined by the formula:

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form in which a is not zero.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

In mathematics, a concave function is one for which the function value at any convex combination of elements in the domain is greater than or equal to that convex combination of those domain elements. Equivalently, a concave function is any function for which the hypograph is convex. The class of concave functions is in a sense the opposite of the class of convex functions. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

<span class="mw-page-title-main">Sign function</span> Mathematical function returning -1, 0 or 1

In mathematics, the sign function or signum function is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as or .

In mathematics, the Riemann–Liouville integral associates with a real function another function Iαf of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, Iαf is an iterated antiderivative of f of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

<span class="mw-page-title-main">Stationary point</span> Zero of the derivative of a function

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing.

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

<span class="mw-page-title-main">Linear approximation</span> Approximation of a function by its tangent line at a point

In mathematics, a linear approximation is an approximation of a general function using a linear function. They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

In mathematics, a critical point is the argument of a function where the function derivative is zero . The value of the function at a critical point is a critical value.

<span class="mw-page-title-main">Second derivative</span> Mathematical operation

In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: where a is acceleration, v is velocity, t is time, x is position, and d is the instantaneous "delta" or change. The last expression is the second derivative of position with respect to time.

<span class="mw-page-title-main">Septic equation</span> Polynomial equation of degree 7

In algebra, a septic equation is an equation of the form

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.

References

  1. Bostock, Linda; Chandler, Suzanne; Chandler, F. S. (1979). Pure Mathematics 2. Nelson Thornes. p. 462. ISBN   978-0-85950-097-5. Thus a cubic equation has either three real roots... or one real root...
  2. Weisstein, Eric W. "Stationary Point". mathworld.wolfram.com. Retrieved 2020-07-27.
  3. Hughes-Hallett, Deborah; Lock, Patti Frazer; Gleason, Andrew M.; Flath, Daniel E.; Gordon, Sheldon P.; Lomen, David O.; Lovelock, David; McCallum, William G.; Osgood, Brad G. (2017-12-11). Applied Calculus. John Wiley & Sons. p. 181. ISBN   978-1-119-27556-5. A point at which the graph of the function f changes concavity is called an inflection point of f
  4. Whitworth, William Allen (1866), "Equations of the third degree", Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Cambridge: Deighton, Bell, and Co., p. 425, retrieved June 17, 2016