Stationary point

Last updated
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points. Stationary vs inflection pts.svg
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.

In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. [1] [2] [3] Informally, it is a point where the function "stops" increasing or decreasing (hence the name).

Contents

For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient has zero norm). The notion of stationary points of a real-valued function is generalized as critical points for complex-valued functions.

Stationary points are easy to visualize on the graph of a function of one variable: they correspond to the points on the graph where the tangent is horizontal (i.e., parallel to the x-axis). For a function of two variables, they correspond to the points on the graph where the tangent plane is parallel to the xy plane.

The notion of a stationary point allows the mathematical description of an astronomical phenomenon that was unexplained before the time of Copernicus. A stationary point is the point in the apparent trajectory of the planet on the celestial sphere, where the motion of the planet seems to stop, before restarting in the other direction (see apparent retrograde motion). This occurs because of the projection of the planet orbit into the ecliptic circle.

Turning points

A turning point of a differentiable function is a point at which the derivative has an isolated zero and changes sign at the point. [2] A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points. If the function is twice differentiable, the isolated stationary points that are not turning points are horizontal inflection points. For example, the function has a stationary point at x = 0, which is also an inflection point, but is not a turning point. [3]

Classification

A graph in which local extrema and global extrema have been labeled. Extrema example original.svg
A graph in which local extrema and global extrema have been labeled.

Isolated stationary points of a real valued function are classified into four kinds, by the first derivative test:

Saddle points (stationary points that are neither local maxima nor minima: they are inflection points. The left is a "rising point of inflection" (derivative is positive on both sides of the red point); the right is a "falling point of inflection" (derivative is negative on both sides of the red point). Stationary and inflection pts.gif
Saddle points (stationary points that are neither local maxima nor minima: they are inflection points. The left is a "rising point of inflection" (derivative is positive on both sides of the red point); the right is a "falling point of inflection" (derivative is negative on both sides of the red point).

The first two options are collectively known as "local extrema". Similarly a point that is either a global (or absolute) maximum or a global (or absolute) minimum is called a global (or absolute) extremum. The last two options—stationary points that are not local extrema—are known as saddle points.

By Fermat's theorem, global extrema must occur (for a function) on the boundary or at stationary points.

Curve sketching

The roots, stationary points, inflection point and concavity of a cubic polynomial x - 6x + 9x - 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. Cubic graph special points repeated.svg
The roots, stationary points, inflection point and concavity of a cubic polynomial x − 6x + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives.

Determining the position and nature of stationary points aids in curve sketching of differentiable functions. Solving the equation f(x) = 0 returns the x-coordinates of all stationary points; the y-coordinates are trivially the function values at those x-coordinates. The specific nature of a stationary point at x can in some cases be determined by examining the second derivative f″(x):

A more straightforward way of determining the nature of a stationary point is by examining the function values between the stationary points (if the function is defined and continuous between them).

A simple example of a point of inflection is the function f(x) = x3. There is a clear change of concavity about the point x = 0, and we can prove this by means of calculus. The second derivative of f is the everywhere-continuous 6x, and at x = 0, f″ = 0, and the sign changes about this point. So x = 0 is a point of inflection.

More generally, the stationary points of a real valued function are those points x0 where the derivative in every direction equals zero, or equivalently, the gradient is zero.

Examples

For the function f(x) = x4 we have f(0) = 0 and f″(0) = 0. Even though f″(0) = 0, this point is not a point of inflection. The reason is that the sign of f(x) changes from negative to positive.

For the function f(x) = sin(x) we have f(0) ≠ 0 and f″(0) = 0. But this is not a stationary point, rather it is a point of inflection. This is because the concavity changes from concave downwards to concave upwards and the sign of f(x) does not change; it stays positive.

For the function f(x) = x3 we have f(0) = 0 and f″(0) = 0. This is both a stationary point and a point of inflection. This is because the concavity changes from concave downwards to concave upwards and the sign of f(x) does not change; it stays positive.

For the function f(x) = 0, one has f(0) = 0 and f″(0) = 0. The point 0 is a non-isolated stationary point which is not a turning point nor a horizontal point of inflection as the signs of f(x) and f″(x) do not change.

The function f(x) = x5 sin(1/x) for x ≠ 0, and f(0) = 0, gives an example where f(x) and f″(x) are both continuous, f(0) = 0 and f″(0) = 0, and yet f(x) does not have a local maximum, a local minimum, nor a point of inflection at 0. So, 0 is a stationary point that is not isolated.

See also

Related Research Articles

The derivative is a fundamental tool of calculus that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.

<span class="mw-page-title-main">Uniform continuity</span> Uniform restraint of the change in functions

In mathematics, a real function of real numbers is said to be uniformly continuous if there is a positive real number such that function values over any function domain interval of the size are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number , then there is a positive real number such that at any and in any function interval of the size .

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">Rolle's theorem</span> On stationary points between two equal values of a real differentiable function

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative is zero. The theorem is named after Michel Rolle.

<span class="mw-page-title-main">Cubic function</span> Polynomial function of degree 3

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

<span class="mw-page-title-main">Convex function</span> Real function with secant line between points above the graph itself

In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph is a convex set. In simple terms, a convex function graph is shaped like a cup , while a concave function's graph is shaped like a cap .

In mathematics, a concave function is one for which the value at any convex combination of elements in the domain is greater than or equal to the convex combination of the values at the endpoints. Equivalently, a concave function is any function for which the hypograph is convex. The class of concave functions is in a sense the opposite of the class of a convex functions. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.

<span class="mw-page-title-main">Maximum and minimum</span> Largest and smallest value taken by a function takes at a given point

In mathematical analysis, the maximum and minimum of a function are, respectively, the largest and smallest value taken by the function. Known generically as extremum, they may be defined either within a given range or on the entire domain of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

<span class="mw-page-title-main">Inflection point</span> Point where the curvature of a curve changes sign

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave to convex, or vice versa.

In mathematics, the Hessian matrix, Hessian or Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or, ambiguously, by ∇2.

<span class="mw-page-title-main">Saddle point</span> Critical point on a surface graph which is not a local extremum

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero, but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function has a critical point at that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the -direction.

In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function f.

<span class="mw-page-title-main">Critical point (mathematics)</span> Point where the derivative of a function is zero

In mathematics, a critical point is the argument of a function where the function derivative is zero . The value of the function at a critical point is a critical value.

<span class="mw-page-title-main">Second derivative</span> Mathematical operation

In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation:

In mathematics, Fermat's theorem is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point. Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat.

In mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time.

<span class="mw-page-title-main">Quasiconvex function</span> Mathematical function with convex lower level sets

In mathematics, a quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set. For a function of a single variable, along any stretch of the curve the highest point is one of the endpoints. The negative of a quasiconvex function is said to be quasiconcave.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (3rd ed.). New York: McGraw-Hill. p.  236. ISBN   0-07-010813-7.
  2. 1 2 Saddler, David; Shea, Julia; Ward, Derek (2011), "12 B Stationary Points and Turning Points", Cambridge 2 Unit Mathematics Year 11, Cambridge University Press, p. 318, ISBN   9781107679573
  3. 1 2 "Turning points and stationary points". TCS FREE high school mathematics 'How-to Library'. Retrieved 30 October 2011.