In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.
The celestial sphere is a conceptual tool used in spherical astronomy to specify the position of an object in the sky without consideration of its linear distance from the observer. The celestial equator divides the celestial sphere into northern and southern hemispheres.
Because astronomical objects are at such remote distances, casual observation of the sky offers no information on their actual distances. All celestial objects seem equally far away, as if fixed onto the inside of a sphere with a large but unknown radius, [1] which appears to rotate westward overhead; meanwhile, Earth underfoot seems to remain still. For purposes of spherical astronomy, which is concerned only with the directions to celestial objects, it makes no difference if this is actually the case or if it is Earth that is rotating while the celestial sphere is stationary.
The celestial sphere can be considered to be infinite in radius. This means any point within it, including that occupied by the observer, can be considered the center. It also means that all parallel lines, be they millimetres apart or across the Solar System from each other, will seem to intersect the sphere at a single point, analogous to the vanishing point of graphical perspective. [2] All parallel planes will seem to intersect the sphere in a coincident great circle [3] (a "vanishing circle").
Conversely, observers looking toward the same point on an infinite-radius celestial sphere will be looking along parallel lines, and observers looking toward the same great circle, along parallel planes. On an infinite-radius celestial sphere, all observers see the same things in the same direction.
For some objects, this is over-simplified. Objects which are relatively near to the observer (for instance, the Moon) will seem to change position against the distant celestial sphere if the observer moves far enough, say, from one side of planet Earth to the other. This effect, known as parallax, can be represented as a small offset from a mean position. The celestial sphere can be considered to be centered at the Earth's center, the Sun's center, or any other convenient location, and offsets from positions referred to these centers can be calculated. [4]
In this way, astronomers can predict geocentric or heliocentric positions of objects on the celestial sphere, without the need to calculate the individual geometry of any particular observer, and the utility of the celestial sphere is maintained. Individual observers can work out their own small offsets from the mean positions, if necessary. In many cases in astronomy, the offsets are insignificant.
The celestial sphere can thus be thought of as a kind of astronomical shorthand, and is applied very frequently by astronomers. For instance, the Astronomical Almanac for 2010 lists the apparent geocentric position of the Moon on January 1 at 00:00:00.00 Terrestrial Time, in equatorial coordinates, as right ascension 6h 57m 48.86s, declination +23° 30' 05.5". Implied in this position is that it is as projected onto the celestial sphere; any observer at any location looking in that direction would see the "geocentric Moon" in the same place against the stars. For many rough uses (e.g. calculating an approximate phase of the Moon), this position, as seen from the Earth's center, is adequate.
For applications requiring precision (e.g. calculating the shadow path of an eclipse), the Almanac gives formulae and methods for calculating the topocentric coordinates, that is, as seen from a particular place on the Earth's surface, based on the geocentric position. [5] This greatly abbreviates the amount of detail necessary in such almanacs, as each observer can handle their own specific circumstances.
Celestial spheres (or celestial orbs) were envisioned to be perfect and divine entities initially from Greek astronomers such as Aristotle. He composed a set of principles called Aristotelian physics that outlined the natural order and structure of the world. Like other Greek astronomers, Aristotle also thought the "...celestial sphere as the frame of reference for their geometric theories of the motions of the heavenly bodies". [6] With his adoption of Eudoxus of Cnidus' theory, Aristotle had described celestial bodies within the Celestial sphere to be filled with pureness, perfect and quintessence (the fifth element that was known to be divine and purity according to Aristotle). Aristotle deemed the Sun, Moon, planets and the fixed stars to be perfectly concentric spheres in a superlunary region above the sublunary sphere. Aristotle had asserted that these bodies (in the superlunary region) are perfect and cannot be corrupted by any of the classical elements: fire, water, air, and earth. Corruptible elements were only contained in the sublunary region and incorruptible elements were in the superlunary region of Aristotle's geocentric model. Aristotle had the notion that celestial orbs must exhibit celestial motion (a perfect circular motion) that goes on for eternity. He also argued that the behavior and property follows strictly to a principle of natural place where the quintessential element moves freely of divine will, while other elements, fire, air, water and earth, are corruptible, subject to change and imperfection. Aristotle's key concepts rely on the nature of the five elements distinguishing the Earth and the Heavens in the astronomical reality, taking Eudoxus's model of separate spheres.
Numerous discoveries from Aristotle and Eudoxus (approximately 395 B.C. to 337 B.C.) have sparked differences in both of their models and sharing similar properties simultaneously. Aristotle and Eudoxus claimed two different counts of spheres in the heavens. According to Eudoxus, there were only 27 spheres in the heavens, while there are 55 spheres in Aristotle's model. Eudoxus attempted to construct his model mathematically from a treatise known as On Speeds (Ancient Greek : Περί Ταχών) and asserted the shape of the hippopede or lemniscate was associated with planetary retrogression. Aristotle emphasized that the speed of the celestial orbs is unchanging, like the heavens, while Eudoxus emphasized that the orbs are in a perfect geometrical shape. Eudoxus's spheres would produce undesirable motions to the lower region of the planets, while Aristotle introduced unrollers between each set of active spheres to counteract the motions of the outer set, or else the outer motions will be transferred to the outer planets. Aristotle would later observe "...the motions of the planets by using the combinations of nested spheres and circular motions in creative ways, but further observations kept undoing their work". [7]
Aside from Aristotle and Eudoxus, Empedocles gave an explanation that the motion of the heavens, moving about it at divine (relatively high) speed, puts the Earth in a stationary position due to the circular motion preventing the downward movement from natural causes. Aristotle criticized Empedocles's model, arguing that all heavy objects go towards the Earth and not the whirl itself coming to Earth. He ridiculed it and claimed that Empedocles's statement was extremely absurd. Anything that defied the motion of natural place and the unchanging heavens (including the celestial spheres) was criticized immediately by Aristotle.
==Celestial coordinate systems== These concepts are important for understanding celestial coordinate systems, frameworks for measuring the positions of objects in the sky. Certain reference lines and planes on Earth, when projected onto the celestial sphere, form the bases of the reference systems. These include the Earth's equator, axis, and orbit. At their intersections with the celestial sphere, these form the celestial equator, the north and south celestial poles, and the ecliptic, respectively. [8] As the celestial sphere is considered arbitrary or infinite in radius, all observers see the celestial equator, celestial poles, and ecliptic at the same place against the background stars.
From these bases, directions toward objects in the sky can be quantified by constructing celestial coordinate systems. Similar to geographic longitude and latitude, the equatorial coordinate system specifies positions relative to the celestial equator and celestial poles, using right ascension and declination. The ecliptic coordinate system specifies positions relative to the ecliptic (Earth's orbit), using ecliptic longitude and latitude. Besides the equatorial and ecliptic systems, some other celestial coordinate systems, like the galactic coordinate system, are more appropriate for particular purposes.
The ancient Greeks assumed the literal truth of stars attached to a celestial sphere, revolving about the Earth in one day, and a fixed Earth. [9] The Eudoxan planetary model, on which the Aristotelian and Ptolemaic models were based, was the first geometric explanation for the "wandering" of the classical planets. [10] The outermost of these "crystal spheres" was thought to carry the fixed stars. Eudoxus used 27 concentric spherical solids to answer Plato's challenge: "By the assumption of what uniform and orderly motions can the apparent motions of the planets be accounted for?" [11] Anaxagoras in the mid 5th century BC was the first known philosopher to suggest that the stars were "fiery stones" too far away for their heat to be felt. Similar ideas were expressed by Aristarchus of Samos. However, they did not enter mainstream European and Islamic astronomy of the late ancient and medieval period. Copernican heliocentrism did away with the planetary spheres, but it did not necessarily preclude the existence of a sphere for the fixed stars. The first astronomer of the European Renaissance to suggest that the stars were distant suns was Giordano Bruno in his De l'infinito universo et mondi (1584). This idea was among the charges, albeit not in a prominent position, brought against him by the Inquisition. The idea became mainstream in the later 17th century, especially following the publication of Conversations on the Plurality of Worlds by Bernard Le Bovier de Fontenelle (1686), and by the early 18th century it was the default working assumptions in stellar astronomy.
A celestial sphere can also refer to a physical model of the celestial sphere or celestial globe. Such globes map the constellations on the outside of a sphere, resulting in a mirror image of the constellations as seen from Earth. The oldest surviving example of such an artifact is the globe of the Farnese Atlas sculpture, a 2nd-century copy of an older (Hellenistic period, ca. 120 BCE) work.
Observers on other worlds would, of course, see objects in that sky under much the same conditions – as if projected onto a dome. Coordinate systems based on the sky of that world could be constructed. These could be based on the equivalent "ecliptic", poles and equator, although the reasons for building a system that way are as much historic as technical.
chauvenet spherical astronomy., p. 19, at Google books.
practical astronomy., art. 2, p. 5, at Google books.
In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or south (negative) of the celestial equator, along the hour circle passing through the point in question.
The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.
Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point in question above the Earth. When paired with declination, these astronomical coordinates specify the location of a point on the celestial sphere in the equatorial coordinate system.
In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.
The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.
The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth. Therefore, the horizontal coordinate system is sometimes called the az/el system, the alt/az system, or the alt-azimuth system, among others. In an altazimuth mount of a telescope, the instrument's two axes follow altitude and azimuth.
In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.
The cosmological model of concentricspheres, developed by Eudoxus, Callippus, and Aristotle, employed celestial spheres all centered on the Earth. In this respect, it differed from the epicyclic and eccentric models with multiple centers, which were used by Ptolemy and other mathematical astronomers until the time of Copernicus.
The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars and planets are accounted for by treating them as embedded in rotating spheres made of an aetherial, transparent fifth element (quintessence), like gems set in orbs. Since it was believed that the fixed stars did not change their positions relative to one another, it was argued that they must be on the surface of a single starry sphere.
In astronomy, the fixed stars are the luminary points, mainly stars, that appear not to move relative to one another against the darkness of the night sky in the background. This is in contrast to those lights visible to naked eye, namely planets and comets, that appear to move slowly among those "fixed" stars. The fixed stars includes all the stars visible to the naked eye other than the Sun, as well as the faint band of the Milky Way. Due to their star-like appearance when viewed with the naked eye, the few visible individual nebulae and other deep-sky objects also are counted among the fixed stars. Approximately 6,000 stars are visible to the naked eye under optimal conditions.
Spherical astronomy, or positional astronomy, is a branch of observational astronomy used to locate astronomical objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical trigonometry and the measurements of astrometry.
Ancient Greek astronomy is the astronomy written in the Greek language during classical antiquity. Greek astronomy is understood to include the Ancient Greek, Hellenistic, Greco-Roman, and late antique eras. Ancient Greek astronomy can be divided into three primary phases: Classical Greek Astronomy, which encompassed the 5th and 4th centuries BC, and Hellenistic Astronomy, which encompasses the subsequent period until the formation of the Roman Empire ca. 30 BC, and finally Greco-Roman astronomy, which refers to the continuation of the tradition of Greek astronomy in the Roman world. During the Hellenistic era and onwards, Greek astronomy expanded beyond the geographic region of Greece as the Greek language had become the language of scholarship throughout the Hellenistic world, in large part delimited by the boundaries of the Macedonian Empire established by Alexander the Great. The most prominent and influential practitioner of Greek astronomy was Ptolemy, whose treatise Almagest shaped astronomical thinking until the modern era. Most of the most prominent constellations known today are taken from Greek astronomy, albeit via the terminology they took on in Latin.
The navigational triangle or PZX triangle is a spherical triangle used in astronavigation to determine the observer's position on the globe. It is composed of three reference points on the celestial sphere:
The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.
The fundamental plane in a spherical coordinate system is a plane of reference that divides the sphere into two hemispheres. The geocentric latitude of a point is then the angle between the fundamental plane and the line joining the point to the centre of the sphere.
In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.
Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.
Historical models of the Solar System first appeared during prehistoric periods and remain updated to this day.. The models of the Solar System throughout history were first represented in the early form of cave markings and drawings, calendars and astronomical symbols. Then books and written records became the main source of information that expressed the way the people of the time thought of the Solar System.
A planetary coordinate system is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E. Davies of the Rand Corporation, including Mercury, Venus, Mars, the four Galilean moons of Jupiter, and Triton, the largest moon of Neptune. A planetary datum is a generalization of geodetic datums for other planetary bodies, such as the Mars datum; it requires the specification of physical reference points or surfaces with fixed coordinates, such as a specific crater for the reference meridian or the best-fitting equigeopotential as zero-level surface.