Astronomical object

Last updated
243 ida.jpg
Mimas Cassini.jpg
Portrait of Jupiter from Cassini.jpg
C2014 Q2.jpg
67P Churyumov-Gerasimenko - Rosetta (32755885495).png
Neptune Voyager2 color calibrated.png
The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819.jpg
Sirius A and B Hubble photo.editted.PNG
Crab Nebula.jpg
BlackHole Lensing.gif
Vela Pulsar jet.jpg
A Swarm of Ancient Stars - GPN-2000-000930.jpg
Pleiades large.jpg
Messier51 sRGB.jpg
Heic1401a-Abell2744-20140107.jpg
NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg
2MASS LSS chart-NEW Nasa.jpg
Selection of astronomical bodies and objects

An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. [1] In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Contents

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

History

Astronomical objects such as stars, planets, nebulae, asteroids and comets have been observed for thousands of years, although early cultures thought of these bodies as gods or deities. These early cultures found the movements of the bodies very important as they used these objects to help navigate over long distances, tell between the seasons, and to determine when to plant crops. During the Middle-Ages, cultures began to study the movements of these bodies more closely. Several astronomers of the Middle-East began to make detailed descriptions of stars and nebulae, and would make more accurate calendars based on the movements of these stars and planets. In Europe, astronomers focused more on devices to help study the celestial objects and creating textbooks, guides, and universities to teach people more about astronomy.

During the scientific revolution, in 1543, Nicolaus Copernicus's heliocentric model was published. This model described the Earth, along with all of the other planets as being astronomical bodies which orbited the Sun located in the center of the Solar System. Johannes Kepler discovered Kepler's laws of planetary motion, which are properties of the orbits that the astronomical bodies shared; this was used to improve the heliocentric model. In 1584, Giordano Bruno proposed that all distant stars are their own suns, being the first in centuries to suggest this idea. Galileo Galilei was one of the first astronomers to use telescopes to observe the sky, in 1610 he observed four largest moons of Jupiter, now named the Galilean moons. Galileo also made observations of the phases of Venus, craters on the Moon, and sunspots on the Sun. Astronomer Edmond Halley was able to successfully predict the return of Halley's Comet, which now bears his name in 1758. In 1781, Sir William Herschel discovered the new planet Uranus, being the first discovered planet not visible by the naked eye.

In the 19th and 20th century, new technologies and scientific innovations allowed scientists to greatly expand their understanding of astronomy and astronomical objects. Larger telescopes and observatories began to be built and scientists began to print images of the Moon and other celestial bodies on photographic plates. New wavelengths of light unseen by the human eye were discovered, and new telescopes were made that made it possible to see astronomical objects in other wavelengths of light. Joseph von Fraunhofer and Angelo Secchi pioneered the field of spectroscopy, which allowed them to observe the composition of stars and nebulae, and many astronomers were able to determine the masses of binary stars based on their orbital elements. Computers began to be used to observe and study massive amounts of astronomical data on stars, and new technologies such as the photoelectric photometer allowed astronomers to accurately measure the color and luminosity of stars, which allowed them to predict their temperature and mass. In 1913, the Hertzsprung-Russell diagram was developed by astronomers Ejnar Hertzsprung and Henry Norris Russell independently of each other, which plotted stars based on their luminosity and color and allowed astronomers to easily examine stars. It was found that stars commonly fell on a band of stars called the main-sequence stars on the diagram. A refined scheme for stellar classification was published in 1943 by William Wilson Morgan and Philip Childs Keenan based on the Hertzsprung-Russel Diagram. Astronomers also began debating whether other galaxies existed beyond the Milky Way, these debates ended when Edwin Hubble identified the Andromeda nebula as a different galaxy, along with many others far from the Milky Way.

Galaxy and larger

The universe can be viewed as having a hierarchical structure. [2] At the largest scales, the fundamental component of assembly is the galaxy. Galaxies are organized into groups and clusters, often within larger superclusters, that are strung along great filaments between nearly empty voids, forming a web that spans the observable universe. [3]

Galaxies have a variety of morphologies, with irregular, elliptical and disk-like shapes, depending on their formation and evolutionary histories, including interaction with other galaxies, which may lead to a merger. [4] Disc galaxies encompass lenticular and spiral galaxies with features, such as spiral arms and a distinct halo. At the core, most galaxies have a supermassive black hole, which may result in an active galactic nucleus. Galaxies can also have satellites in the form of dwarf galaxies and globular clusters. [5]

Within a galaxy

The constituents of a galaxy are formed out of gaseous matter that assembles through gravitational self-attraction in a hierarchical manner. At this level, the resulting fundamental components are the stars, which are typically assembled in clusters from the various condensing nebulae. [6] The great variety of stellar forms are determined almost entirely by the mass, composition and evolutionary state of these stars. Stars may be found in multi-star systems that orbit about each other in a hierarchical organization. A planetary system and various minor objects such as asteroids, comets and debris, can form in a hierarchical process of accretion from the protoplanetary disks that surround newly formed stars.

The various distinctive types of stars are shown by the Hertzsprung–Russell diagram (H–R diagram)—a plot of absolute stellar luminosity versus surface temperature. Each star follows an evolutionary track across this diagram. If this track takes the star through a region containing an intrinsic variable type, then its physical properties can cause it to become a variable star. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae and Cepheid variables. [7] The evolving star may eject some portion of its atmosphere to form a nebula, either steadily to form a planetary nebula or in a supernova explosion that leaves a remnant. Depending on the initial mass of the star and the presence or absence of a companion, a star may spend the last part of its life as a compact object; either a white dwarf, neutron star, or black hole.

Shape

Composite image showing the round dwarf planet Ceres; the slightly smaller, mostly round Vesta; and the much smaller, much lumpier Eros Eros, Vesta and Ceres size comparison.jpg
Composite image showing the round dwarf planet Ceres; the slightly smaller, mostly round Vesta; and the much smaller, much lumpier Eros

The IAU definitions of planet and dwarf planet require that a Sun-orbiting astronomical body has undergone the rounding process to reach a roughly spherical shape, an achievement known as hydrostatic equilibrium. The same spheroidal shape can be seen on smaller rocky planets like Mars to gas giants like Jupiter.

Any natural Sun-orbiting body that has not reached hydrostatic equilibrium is classified by the IAU as a small Solar System body (SSSB). These come in many non-spherical shapes which are lumpy masses accreted haphazardly by in-falling dust and rock; not enough mass falls in to generate the heat needed to complete the rounding. Some SSSBs are just collections of relatively small rocks that are weakly held next to each other by gravity but are not actually fused into a single big bedrock. Some larger SSSBs are nearly round but have not reached hydrostatic equilibrium. The small Solar System body 4 Vesta is large enough to have undergone at least partial planetary differentiation.

Stars like the Sun are also spheroidal due to gravity's effects on their plasma, which is a free-flowing fluid. Ongoing stellar fusion is a much greater source of heat for stars compared to the initial heat released during their formation.

Categories by location

The table below lists the general categories of bodies and objects by their location or structure.

Solar bodiesExtrasolar Observable universe
Simple bodiesCompound objectsExtended objects
Planets
Dwarf planets
Minor planets
Stars (see sections below)
By luminosity / evolution
  • O (blue)
  • B (blue-white)
  • A (white)
  • F (yellow-white)
  • G (yellow)
  • K (orange)
  • M (red)
Systems
Stellar groupings
Galaxies
Discs and media
Cosmic scale
Observable Universe Logarithmic Map (vertical layout english annotations) for wikipedia 635 x 2586.png
Logarithmic representation of the observable
universe with the notable astronomical objects
known today. From down to up the celestial
bodies are arranged according to their proximity
to the Earth.
The Celestial Zoo infographic wikimedia.png
Infographic listing 210 notable astronomical
objects marked on a central logarithmic map of
the observable universe. A small view and some
distinguishing features for each astronomical
object are included.

See also

Related Research Articles

<span class="mw-page-title-main">Amateur astronomy</span> Hobby of watching the sky and stars

Amateur astronomy is a hobby where participants enjoy observing or imaging celestial objects in the sky using the unaided eye, binoculars, or telescopes. Even though scientific research may not be their primary goal, some amateur astronomers make contributions in doing citizen science, such as by monitoring variable stars, double stars, sunspots, or occultations of stars by the Moon or asteroids, or by discovering transient astronomical events, such as comets, galactic novae or supernovae in other galaxies.

<span class="mw-page-title-main">Aquarius (constellation)</span> Zodiac constellation straddling the celestial equator

Aquarius is an equatorial constellation of the zodiac, between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", and its old astronomical symbol is (♒︎), a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac. It was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, and it remains one of the 88 modern constellations. It is found in a region often called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, and Eridanus the river.

<span class="mw-page-title-main">History of astronomy</span>

Astronomy is the oldest of the natural sciences, dating back to antiquity, with its origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory: vestiges of these are still found in astrology, a discipline long interwoven with public and governmental astronomy. It was not completely separated in Europe during the Copernican Revolution starting in 1543. In some cultures, astronomical data was used for astrological prognostication.

<span class="mw-page-title-main">Open cluster</span> Large group of stars less bound than globular clusters

An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. They are loosely bound by mutual gravitational attraction and become disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center. This can result in a loss of cluster members through internal close encounters and a dispersion into the main body of the galaxy. Open clusters generally survive for a few hundred million years, with the most massive ones surviving for a few billion years. In contrast, the more massive globular clusters of stars exert a stronger gravitational attraction on their members, and can survive for longer. Open clusters have been found only in spiral and irregular galaxies, in which active star formation is occurring.

<span class="mw-page-title-main">Planetary nebula</span> Type of emission nebula created by dying red giants

A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.

<span class="mw-page-title-main">Astronomy</span> Scientific study of celestial objects

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole.

<span class="mw-page-title-main">Astrophysics</span> Subfield of astronomy

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

In ancient times, only the Sun and Moon, a few stars, and the most easily visible planets had names. Over the last few hundred years, the number of identified astronomical objects has risen from hundreds to over a billion, and more are discovered every year. Astronomers need to be able to assign systematic designations to unambiguously identify all of these objects, and at the same time give names to the most interesting objects, and where relevant, features of those objects.

<span class="mw-page-title-main">Lists of astronomical objects</span>

This is a list of lists, grouped by type of astronomical object.

The definition of the term planet has changed several times since the word was coined by the ancient Greeks. Greek astronomers employed the term ἀστέρες πλανῆται, 'wandering stars', for star-like objects which apparently moved over the sky. Over the millennia, the term has included a variety of different celestial bodies, from the Sun and the Moon to satellites and asteroids.

<span class="mw-page-title-main">Deep-sky object</span> Any astronomical object that is not an individual star

A deep-sky object (DSO) is any astronomical object that is not an individual star or Solar System object. The classification is used for the most part by amateur astronomers to denote visually observed faint naked eye and telescopic objects such as star clusters, nebulae and galaxies. This distinction is practical and technical, implying a variety of instruments and techniques appropriate to observation, and does not distinguish the nature of the object itself.

<span class="mw-page-title-main">Night sky</span> Appearance of the sky in a clear night

The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

This is a timeline of astronomy. It covers ancient, medieval, Renaissance-era, and finally modern astronomy.

<span class="mw-page-title-main">Outline of astronomy</span>

The following outline is provided as an overview of and topical guide to astronomy:

IAU definition of <i>planet</i> 2006 International Astronomical Union definition

The International Astronomical Union (IAU) defined in August 2006 that, in the Solar System, a planet is a celestial body that:

  1. is in orbit around the Sun,
  2. has sufficient mass to assume hydrostatic equilibrium, and
  3. has "cleared the neighbourhood" around its orbit.
<span class="mw-page-title-main">Discovery and exploration of the Solar System</span>

Discovery and exploration of the Solar System is observation, visitation, and increase in knowledge and understanding of Earth's "cosmic neighborhood". This includes the Sun, Earth and the Moon, the major planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, their satellites, as well as smaller bodies including comets, asteroids, and dust.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Astronomy Photographer of the Year</span> Prize competition

Astronomy Photographer of the Year is an annual astronomy photography competition and exhibition that is organised by the Royal Observatory, Greenwich.

References

  1. Task Group on Astronomical Designations from IAU Commission 5 (April 2008). "Naming Astronomical Objects". International Astronomical Union (IAU). Archived from the original on 2 August 2010. Retrieved 4 July 2010.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. Narlikar, Jayant V. (1996). Elements of Cosmology. Universities Press. ISBN   81-7371-043-0.
  3. Smolin, Lee (1998). The life of the cosmos . Oxford University Press US. p.  35. ISBN   0-19-512664-5.
  4. Buta, Ronald James; Corwin, Harold G.; Odewahn, Stephen C. (2007). The de Vaucouleurs atlas of galaxies. Cambridge University Press. p. 301. ISBN   978-0-521-82048-6.
  5. Hartung, Ernst Johannes (1984-10-18). Astronomical Objects for Southern Telescopes. ISBN   0521318874 . Retrieved 13 February 2017.
  6. Elmegreen, Bruce G. (January 2010). "The nature and nurture of star clusters". Star clusters: basic galactic building blocks throughout time and space, Proceedings of the International Astronomical Union, IAU Symposium. Vol. 266. pp. 3–13. arXiv: 0910.4638 . Bibcode:2010IAUS..266....3E. doi:10.1017/S1743921309990809.
  7. Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004). Stellar interiors: physical principles, structure, and evolution. Astronomy and astrophysics library (2nd ed.). Springer. p.  86. ISBN   0-387-20089-4.