Ice giant

Last updated
Uranus photographed by Voyager 2 in January 1986
Neptune - Voyager 2 (29347980845) flatten crop.jpg
Neptune photographed by Voyager 2 in August 1989

An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune.


In astrophysics and planetary science the term "ices" refers to volatile chemical compounds with freezing points above about 100  K, such as water, ammonia, or methane, with freezing points of 273 K, 195 K, and 91 K, respectively (see Volatiles). In the 1990s, it was realized that Uranus and Neptune are a distinct class of giant planet, separate from the other giant planets, Jupiter and Saturn. They have become known as ice giants. Their constituent compounds were solids when they were primarily incorporated into the planets during their formation, either directly in the form of ices or trapped in water ice. Today, very little of the water in Uranus and Neptune remains in the form of ice. Instead, water primarily exists as supercritical fluid at the temperatures and pressures within them. [1] Uranus and Neptune consist of only about 20% hydrogen and helium by mass, compared to the Solar System's gas giants, Jupiter and Saturn, which are more than 90% hydrogen and helium by mass.


In 1952, science fiction writer James Blish coined the term gas giant [2] and it was used to refer to the large non-terrestrial planets of the Solar System. However, since the late 1940s [3] the compositions of Uranus and Neptune have been understood to be significantly different from those of Jupiter and Saturn. They are primarily composed of elements heavier than hydrogen and helium, constituting a separate type of giant planet altogether. Because during their formation Uranus and Neptune incorporated their material as either ices or gas trapped in water ice, the term ice giant came into use. [1] [3] In the early 1970s, the terminology became popular in the science fiction community, e.g., Bova (1971) [4] , but the earliest scientific usage of the terminology was likely by Dunne & Burgess (1978) [5] in a NASA report. [6]


Modelling the formation of the terrestrial and gas giants is relatively straightforward and uncontroversial. The terrestrial planets of the Solar System are widely understood to have formed through collisional accumulation of planetesimals within the protoplanetary disc. The gas giantsJupiter, Saturn, and their extrasolar counterpart planets—are thought to have formed solid cores of around 10 Earth masses (M🜨) through the same process, while accreting gaseous envelopes from the surrounding solar nebula over the course of a few to several million years (Ma), [7] [8] although alternative models of core formation based on pebble accretion have recently been proposed. [9] Some extrasolar giant planets may instead have formed via gravitational disk instabilities. [8] [10]

The formation of Uranus and Neptune through a similar process of core accretion is far more problematic. The escape velocity for the small protoplanets about 20 astronomical units (AU) from the center of the Solar System would have been comparable to their relative velocities. Such bodies crossing the orbits of Saturn or Jupiter would have been liable to be sent on hyperbolic trajectories ejecting them from the system. Such bodies, being swept up by the gas giants, would also have been likely to just be accreted into the larger planets or thrown into cometary orbits. [10]

In spite of the trouble modelling their formation, many ice giant candidates have been observed orbiting other stars since 2004. This indicates that they may be common in the Milky Way. [1]


Considering the orbital challenges of protoplanets 20 AU or more from the centre of the Solar System would experience, a simple solution is that the ice giants formed between the orbits of Jupiter and Saturn before being gravitationally scattered outward to their now more distant orbits. [10]

Disk instability

Gravitational instability of the protoplanetary disk could also produce several gas giant protoplanets out to distances of up to 30 AU. Regions of slightly higher density in the disk could lead to the formation of clumps that eventually collapse to planetary densities. [10] A disk with even marginal gravitational instability could yield protoplanets between 10 and 30 AU in over one thousand years (ka). This is much shorter than the 100,000 to 1,000,000 years required to produce protoplanets through core accretion of the cloud and could make it viable in even the shortest-lived disks, which exist for only a few million years. [10]

A problem with this model is determining what kept the disk stable before the instability. There are several possible mechanisms allowing gravitational instability to occur during disk evolution. A close encounter with another protostar could provide a gravitational kick to an otherwise stable disk. A disk evolving magnetically is likely to have magnetic dead zones, due to varying degrees of ionization, where mass moved by magnetic forces could pile up, eventually becoming marginally gravitationally unstable. A protoplanetary disk may simply accrete matter slowly, causing relatively short periods of marginal gravitational instability and bursts of mass collection, followed by periods where the surface density drops below what is required to sustain the instability. [10]


Observations of photoevaporation of protoplanetary disks in the Orion Trapezium Cluster by extreme ultraviolet (EUV) radiation emitted by θ1 Orionis C suggests another possible mechanism for the formation of ice giants. Multiple-Jupiter-mass gas-giant protoplanets could have rapidly formed due to disk instability before having the majority of their hydrogen envelopes stripped off by intense EUV radiation from a nearby massive star. [10]

In the Carina Nebula, EUV fluxes are approximately 100 times higher than in Trapezium's Orion Nebula. Protoplanetary disks are present in both nebulae. Higher EUV fluxes make this an even more likely possibility for ice-giant formation. The stronger EUV would increase the removal of the gas envelopes from the protoplanets before they could collapse sufficiently to resist further loss. [10]


These cut-aways illustrate interior models of the giant planets. The planetary cores of gas giants Jupiter and Saturn are overlaid by a deep layer of metallic hydrogen, whereas the mantles of the ice giants Uranus and Neptune are composed of heavier elements. Gas Giant Interiors.jpg
These cut-aways illustrate interior models of the giant planets. The planetary cores of gas giants Jupiter and Saturn are overlaid by a deep layer of metallic hydrogen, whereas the mantles of the ice giants Uranus and Neptune are composed of heavier elements.

The ice giants represent one of two fundamentally different categories of giant planets present in the Solar System, the other group being the more-familiar gas giants, which are composed of more than 90% hydrogen and helium (by mass). Their hydrogen is thought to extend all the way down to their small rocky cores, where hydrogen molecular ion transitions to metallic hydrogen under the extreme pressures of hundreds of gigapascals (GPa). [1]

The ice giants are primarily composed of heavier elements. Based on the abundance of elements in the universe, oxygen, carbon, nitrogen, and sulfur are most likely. Although the ice giants also have hydrogen envelopes, these are much smaller. They account for less than 20% of their mass. Their hydrogen also never reaches the depths necessary for the pressure to create metallic hydrogen. [1] These envelopes nevertheless limit observation of the ice giants' interiors, and thereby the information on their composition and evolution. [1]

Although Uranus and Neptune are referred to as ice giant planets, it is thought that there is a supercritical water ocean beneath their clouds, which accounts for about two-thirds of their total mass. [11] [12]

Atmosphere and weather

The gaseous outer layers of the ice giants have several similarities to those of the gas giants. These include long-lived, high-speed equatorial winds, polar vortices, large-scale circulation patterns, and complex chemical processes driven by ultraviolet radiation from above and mixing with the lower atmosphere. [1]

Studying the ice giants' atmospheric pattern also gives insights into atmospheric physics. Their compositions promote different chemical processes and they receive far less sunlight in their distant orbits than any other planets in the Solar System (increasing the relevance of internal heating on weather patterns). [1]

The largest visible feature on Neptune is the recurring Great Dark Spot. It forms and dissipates every few years, as opposed to the similarly sized Great Red Spot of Jupiter, which has persisted for centuries. Of all known giant planets in the Solar System, Neptune emits the most internal heat per unit of absorbed sunlight, a ratio of approximately 2.6. Saturn, the next-highest emitter, only has a ratio of about 1.8. Uranus emits the least heat, one-tenth as much as Neptune. It is suspected that this may be related to its extreme 98˚ axial tilt. This causes its seasonal patterns to be very different from those of any other planet in the Solar System. [1]

There are still no complete models explaining the atmospheric features observed in the ice giants. [1] Understanding these features will help elucidate how the atmospheres of giant planets in general function. [1] Consequently, such insights could help scientists better predict the atmospheric structure and behaviour of giant exoplanets discovered to be very close to their host stars (pegasean planets) and exoplanets with masses and radii between that of the giant and terrestrial planets found in the Solar System. [1]


Because of their large sizes and low thermal conductivities, the planetary interior pressures range up to several hundred GPa and temperatures of several thousand kelvins (K). [13]

In March 2012, it was found that the compressibility of water used in ice-giant models could be off by one third. [14] This value is important for modeling ice giants, and has a ripple effect on understanding them. [14]

Magnetic fields

The magnetic fields of Uranus and Neptune are both unusually displaced and tilted. [15] Their field strengths are intermediate between those of the gas giants and those of the terrestrial planets, being 50 and 25 times that of Earth's, respectively. The equatorial magnetic field strengths of Uranus and Neptune are respectively 75 percent and 45 percent of Earth's 0.305 gauss. [15] Their magnetic fields are believed to originate in an ionized convecting fluid-ice mantle. [15]

Spacecraft visitation



See also

Related Research Articles

Giant planet Planet much larger than the Earth

A giant planet is any planet much larger than Earth. They are usually primarily composed of low-boiling-point materials, rather than rock or other solid matter, but massive solid planets can also exist. There are four known giant planets in the Solar System: Jupiter, Saturn, Uranus and Neptune. Many extrasolar giant planets have been identified orbiting other stars.

Planet Class of astronomical body directly orbiting a star or stellar remnant

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.

Solar System The planets and their moons that orbit around the Sun

The Solar System is the gravitationally bound system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, the dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the moons—two are larger than the smallest planet, Mercury.

Planetesimal solid objects thought to exist in protoplanetary disks and in debris disks

Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the solar system about 4.6 billion years ago, they aid study of its formation.

Nebular hypothesis Astronomical theory that the Solar System formed from nebulous material

The Nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests that the Solar System formed from gas and dust orbiting the Sun. The theory was developed by Immanuel Kant and published in his Allgemeine Naturgeschichte und Theorie des Himmels, published in 1755 and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

Protoplanetary disk Rotating circumstellar disk of dense gas surrounding a young newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

Planetary migration astronomical phenomenon when a planet or other stellar satellite interacts with a disk of gas or planetesimals, resulting in the alteration of the satellites orbital parameters, especially its semi-major axis

Planetary migration occurs when a planet or other body in orbit around a star interacts with a disk of gas or planetesimals, resulting in the alteration of its orbital parameters, especially its semi-major axis. Planetary migration is the most likely explanation for hot Jupiters: exoplanets with Jovian masses but orbits of only a few days. The generally accepted theory of planet formation from a protoplanetary disk predicts such planets cannot form so close to their stars, as there is insufficient mass at such small radii and the temperature is too high to allow the formation of rocky or icy planetesimals.

Formation and evolution of the Solar System Formation of the Solar System by gravitational collapse of a molecular cloud and subsequent geological history

The formation and evolution of the Solar System began 4.5 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

History of Solar System formation and evolution hypotheses aspect of history

The history of scientific thought about the Formation and evolution of the Solar System begins with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704.

Nice model astrophysical model of planetary migration in the Solar System

The Nicemodel is a scenario for the dynamical evolution of the Solar System. It is named for the location of the Observatoire de la Côte d'Azur, where it was initially developed, in 2005 in Nice, France. It proposes the migration of the giant planets from an initial compact configuration into their present positions, long after the dissipation of the initial protoplanetary disk. In this way, it differs from earlier models of the Solar System's formation. This planetary migration is used in dynamical simulations of the Solar System to explain historical events including the Late Heavy Bombardment of the inner Solar System, the formation of the Oort cloud, and the existence of populations of small Solar System bodies including the Kuiper belt, the Neptune and Jupiter trojans, and the numerous resonant trans-Neptunian objects dominated by Neptune.

The five-planet Nice model is a recent variation of the Nice model that begins with five giant planets, the four plus an additional ice giant in a chain of mean-motion resonances.

The following outline is provided as an overview of and topical guide to the Solar System:

The jumping-Jupiter scenario specifies an evolution of giant-planet migration described by the Nice model, in which an ice giant is scattered inward by Saturn and outward by Jupiter, causing their semi-major axes to jump, quickly separating their orbits. The jumping-Jupiter scenario was proposed by Ramon Brasser, Alessandro Morbidelli, Rodney Gomes, Kleomenis Tsiganis, and Harold Levison after their studies revealed that the smooth divergent migration of Jupiter and Saturn resulted in an inner Solar System significantly different from the current Solar System. During this migration secular resonances swept through the inner Solar System exciting the orbits of the terrestrial planets and the asteroids, leaving the planets' orbits too eccentric, and the asteroid belt with too many high-inclination objects. The jumps in the semi-major axes of Jupiter and Saturn described in the jumping-Jupiter scenario can allow these resonances to quickly cross the inner Solar System without altering orbits excessively, although the terrestrial planets remain sensitive to its passage.

The Nice 2 model is a model of the early evolution of the Solar System. The Nice 2 model resembles the original Nice model in that a late instability of the outer Solar System results in gravitational encounters between planets, the disruption of an outer planetesimal disk, and the migrations of the outer planets to new orbits. However, the Nice 2 model differs in its initial conditions and in the mechanism for triggering the late instability. These changes reflect the analysis of the orbital evolution of the outer Solar System during the gas disk phase and the inclusion of gravitational interactions between planetesimals in the outer disk into the model.

Gas giant Giant planet which mainly consists of light elements such as hydrogen and helium

A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are sometimes known as failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet", but in the 1990s it became known that Uranus and Neptune are really a distinct class of giant planet, being composed mainly of heavier volatile substances. For this reason, Uranus and Neptune are now often classified in the separate category of ice giants.

Grand tack hypothesis in the early days of the Solar System, Jupiter moved inward then reversed course ("tacked") to its current orbit.

In planetary astronomy, the grand tack hypothesis proposes that after its formation at 3.5 AU, Jupiter migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's migration is likened to the path of a sailboat changing directions (tacking) as it travels against the wind.

Satellite system (astronomy) collection of objects orbiting around a planetary mass object

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own. Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary, or less commonly by the name of their primary. Where only one satellite is known, or it is a binary orbiting a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite.

Pebble accretion

In pebble accretion the accretion of objects ranging from centimeters up to meters in diameter onto planetesimals in a protoplanetary disk is enhanced by aerodynamic drag from the gas present in the disc. This drag reduces the relative velocity of pebbles as they pass by larger bodies, preventing some from escaping the body's gravity. These pebbles are then accreted by the body after spiraling or settling toward its surface. This process increases the cross section over which the large bodies can accrete material, accelerating their growth. The rapid growth of the planetesimals via pebble accretion allows for the formation of giant planet cores in the outer Solar System before the dispersal of the gas disk. A reduction in the size of pebbles as they lose water ice after crossing the ice line and a declining density of gas with distance from the sun slow the rates of pebble accretion in the inner Solar System resulting in smaller terrestrial planets, a small mass of Mars and a low mass asteroid belt.

The following outline is provided as an overview of and topical guide to Uranus:

Ravit Helled Israeli planetary scientist

Ravit Helled Ita is an Israeli planetary scientist and a professor in the department of astrophysics and cosmology at the University of Zürich. She studies gas giant planets in the solar system and exoplanets.


  1. 1 2 3 4 5 6 7 8 9 10 11 12
  2. Science Fiction Citations, Citations for gas giant n.
  3. 1 2 Mark Marley, "Not a Heart of Ice", The Planetary Society, 2 April 2019. read
  4. Bova, B. 1971, The Many Worlds of Science Fiction (Boston, MA: E.P. Dutton)
  5. James A. Dunne and Eric Burgess, The Voyage of Mariner 10: Mission to Venus and Mercury, Scientific and Technical Information Division, National Aeronautics and Space Administration, 1978, 224 pages, page 2. read
  6. Molaverdikhani, Karan (2019). "From Cold to Hot Irradiated Gaseous Exoplanets: Toward an Observation-based Classification Scheme". The Astrophysical Journal. 873 (1): 32. arXiv: 1809.09629 . Bibcode:2019ApJ...873...32M. doi:10.3847/1538-4357/aafda8.
  7. Lissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009). "Models of Jupiter's growth incorporating thermal and hydrodynamic constraints". Icarus. 199 (2): 338–350. arXiv: 0810.5186 . Bibcode:2009Icar..199..338L. doi:10.1016/j.icarus.2008.10.004.
  8. 1 2 D'Angelo, Gennaro; Durisen, Richard H.; Lissauer, Jack J. (December 2010). "Giant Planet Formation". In Seager, Sara (ed.). Exoplanets. University of Arizona Press. pp. 319–346. arXiv: 1006.5486 . ISBN   978-0-8165-2945-2.
  9. Levison, Harold F.; Kretke, Katherine A.; Duncan, Martin J. (2015). "Growing the gas-giant planets by the gradual accumulation of pebbles". Nature. 524: 322–324. arXiv: 1510.02094 . Bibcode:2015Natur.524..322L. doi:10.1038/nature14675. PMID   26289203.
  10. 1 2 3 4 5 6 7 8
  11. NASA Completes Study of Future ‘Ice Giant’ Mission Concepts. NASA TV. 20 June 2017.
  12. [ On to the Ice Giants]. (PDF) Pre-Decadal study summary. NASA. Presented at the European Geophysical Union, 24 April 2017.
  13. 1 2 "Complete Archive for Astrobiology Press Release, News Exclusive, News Briefs".
  14. 1 2 3 "The Nature and Origin of Magnetic Fields".
  15. Christophe, Bruno; Spilker, L. J.; Anderson, J. D.; André, N.; Asmar, S. W.; Aurnou, J.; Banfield, D.; Barucci, A.; Bertolami, O.; Bingham, R.; Brown, P; Cecconi, B.; Courty, J.-M.; Dittus, H.; Fletcher, L. N.; Foulon, B.; Francisco, F.; Gil, P. J. S.; Glassmeier, K. H.; Grundy, W.; Hansen, C.; Helbert, J.; Helled, R.; Hussmann, H.; Lamine, B.; Lämmerzahl, C.; Lamy, L.; Lehoucq, R.; Lenoir, B.; Levy, A.; Orton, G.; Páramos, J.; Poncy, J.; Postberg, F.; Progrebenko, S. V.; Reh, K. R.; Reynaud, S.; Robert, C.; Samain, E.; Saur, J; Sayanagi, K. M.; Schmitz, N.; Selig, H.; Sohl, F.; Spilker, T. R.; Srama, R.; Stephan, K.; Touboul, P.; Wolf, P. (8 July 2012). "OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt" (PDF). Experimental Astronomy. Springer. 34 (2): 203–242. arXiv: 1106.0132 . Bibcode:2012ExA....34..203C. doi:10.1007/s10686-012-9309-y via UCLA Simulated Planetary Interiors Lab.