Double planet

Last updated
Visual comparison of the sizes of Earth and the Moon (above right) and Pluto-Charon (below right) Pluto & Charon, Earth size comparison.jpg
Visual comparison of the sizes of Earth and the Moon (above right) and PlutoCharon (below right)

In astronomy, a double planet (also binary planet) is a binary satellite system where both objects are planets, or planetary-mass objects, that share an orbital axis external to both planetary bodies.


Although up to a third of the star systems in the Milky Way are binary, [1] double planets are expected to be much rarer given the typical planet to satellite mass ratio is around 1:10000, they are influenced heavily by the gravitational pull of the parent star [2] and according to the Giant-impact hypothesis and are gravitationally stable only under particular circumstances.

Binary asteroids with components of roughly equal mass are sometimes referred to as double minor planets. These include binary asteroids 69230 Hermes and 90 Antiope and binary Kuiper belt objects (KBOs) 79360 Sila–Nunam and 1998 WW31 .

Definition of "double planet"

The PlutoCharon system is closer to binary than the Earth–Moon system (distance not to scale).
Moon, Earth size comparison.jpg
The EarthMoon system is sometimes informally referred to as a double planet (masses are roughly proportional to volumes, not surface area). [3]

There is debate as to what criteria should be used to distinguish "double planet" from a "planet–moon system". The following are considerations.

At its 2006 General Assembly, the International Astronomical Union considered a proposal that Pluto and Charon be reclassified as a double planet, [4] but the proposal was abandoned in favor of the current IAU definition of planet. In promotional materials advertising the SMART-1 mission, the European Space Agency referred to the EarthMoon system as a double planet. [3]

Both bodies satisfy planet criterion

A definition proposed in the Astronomical Journal calls for both bodies to individually satisfy an orbit-clearing criterion in order to be called a double planet. [5]

Mass ratios closer to 1

One important consideration in defining "double planet" is the ratio of the masses of the two bodies. A mass ratio of 1 would indicate bodies of equal mass, and bodies with mass ratios closer to 1 are more attractive to label as "doubles". Using this definition, the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune can all easily be excluded; they all have masses less than 0.00025 (14000) of the planets around which they revolve. Some dwarf planets, too, have satellites substantially less massive than the dwarf planets themselves.

The most notable exception is the Pluto–Charon system. The Charon-to-Pluto mass ratio of 0.122 (≈ 18) is close enough to 1 that Pluto and Charon have frequently been described by many scientists as "double dwarf planets" ("double planets" prior to the 2006 definition of "planet"). The International Astronomical Union (IAU) earlier classified Charon as a satellite of Pluto, but had also explicitly expressed the willingness to reconsider the bodies as double-dwarf planets in the future. [6] But a report [7] in 2006 classified Charon-Pluto as a double planet.

The Moon-to-Earth mass ratio of 0.01230 (≈ 181) is also notably close to 1 when compared to all other satellite-to-planet ratios. Consequently, some scientists view the Earth-Moon system as a double planet as well, though this is a minority view. Eris's lone satellite, Dysnomia, has a radius somewhere around 14 that of Eris; assuming similar densities (Dysnomia's compositional make-up may or may not differ substantially from Eris's), the mass ratio would be near 140, a value intermediate to the Moon–Earth and Charon–Pluto ratios.

The next criteria both attempt to answer the question "How close to 1 must the mass ratio be?"

Pluto-Charon system: the barycenter lies outside of Pluto. Pluto-Charon system-new.gif
PlutoCharon system: the barycenter lies outside of Pluto.

Center-of-mass position

Currently, the most commonly proposed definition for a double-planet system is one in which the barycenter, around which both bodies orbit, lies outside both bodies. Under this definition, Pluto and Charon are double dwarf planets, since they orbit a point clearly outside of Pluto, as visible in animations created from images of the New Horizons space probe in June 2015.

Under this definition, the Earth–Moon system is not currently a double planet; although the Moon is massive enough to cause the Earth to make a noticeable revolution around this center of mass, this point nevertheless lies well within Earth. However, the Moon currently migrates outward from Earth at a rate of approximately 3.8 cm (1.5 in) per year; in a few billion years, the Earth–Moon system's center of mass will lie outside Earth, which would make it a double-planet system.

The center of mass of the Jupiter–Sun system lies outside the surface of the Sun, though arguing that Jupiter and the Sun are a double star is not analogous to arguing Pluto-Charon is a double dwarf planet. Jupiter is too light to be a fusor; were it thirteen times heavier, it would achieve deuterium fusion and become a brown dwarf. [8]

Tug-of-war value

Isaac Asimov suggested a distinction between planet–moon and double-planet structures based in part on what he called a "tug-of-war" value, which does not consider their relative sizes. [9] This quantity is simply the ratio of the force exerted on the smaller body by the larger (primary) body to the force exerted on the smaller body by the Sun. This can be shown to equal

where mp is the mass of the primary (the larger body), ms is the mass of the Sun, ds is the distance between the smaller body and the Sun, and dp is the distance between the smaller body and the primary. [9] The tug-of-war value does not rely on the mass of the satellite (the smaller body).

This formula actually reflects the relation of the gravitational effects on the smaller body from the larger body and from the Sun. The tug-of-war figure for Saturn's moon Titan is 380, which means that Saturn's hold on Titan is 380 times as strong as the Sun's hold on Titan. Titan's tug-of-war value may be compared with that of Saturn's moon Phoebe, which has a tug-of-war value of just 3.5. So Saturn's hold on Phoebe is only 3.5 times as strong as the Sun's hold on Phoebe.

Asimov calculated tug-of-war values for several satellites of the planets. He showed that even the largest gas giant, Jupiter, had only a slightly better hold than the Sun on its outer captured satellites, some with tug-of-war values not much higher than one. In nearly every one of Asimov's calculations the tug-of-war value was found to be greater than one, so in those cases the Sun loses the tug-of-war with the planets. The one exception was Earth's Moon, where the Sun wins the tug-of-war with a value of 0.46, which means that Earth's hold on the Moon is less than half that of the Sun's. Asimov included this with his other arguments that Earth and the Moon should be considered a binary planet. [9]

We might look upon the Moon, then, as neither a true satellite of the Earth nor a captured one, but as a planet in its own right, moving about the Sun in careful step with the Earth. From within the Earth–Moon system, the simplest way of picturing the situation is to have the Moon revolve about the Earth; but if you were to draw a picture of the orbits of the Earth and Moon about the Sun exactly to scale, you would see that the Moon's orbit is everywhere concave toward the Sun. It is always "falling toward" the Sun. All the other satellites, without exception, "fall away" from the Sun through part of their orbits, caught as they are by the superior pull of their primary planets but not the Moon. [9] [10] [Footnote 1]

Isaac Asimov

See the Path of Earth and Moon around Sun section in the "Orbit of the Moon" article for a more detailed explanation.

This definition of double planet depends on the pair's distance from the Sun. If the Earth–Moon system happened to orbit farther away from the Sun than it does now, then Earth would win the tug of war. For example, at the orbit of Mars, the Moon's tug-of-war value would be 1.05. Also, several tiny moons discovered since Asimov's proposal would qualify as double planets by this argument. Neptune's small outer moons Neso and Psamathe, for example, have tug-of-war values of 0.42 and 0.44, less than that of Earth's Moon. Yet their masses are tiny compared to Neptune's, with an estimated ratio of 1.5×109 (1700,000,000) and 0.4×109 (12,500,000,000).

Formation of the system

A final consideration is the way in which the two bodies came to form a system. Both the Earth-Moon and Pluto-Charon systems are thought to have been formed as a result of giant impacts: one body was impacted by a second body, resulting in a debris disk, and through accretion, either two new bodies formed or one new body formed, with the larger body remaining (but changed). However, a giant impact is not a sufficient condition for two bodies being "double planets" because such impacts can also produce tiny satellites, such as the four small outer satellites of Pluto.

A now-abandoned hypothesis for the origin of the Moon was actually called the "double-planet hypothesis"; the idea was that the Earth and the Moon formed in the same region of the Solar System's proto-planetary disk, forming a system under gravitational interaction. This idea, too, is a problematic condition for defining two bodies as "double planets" because planets can "capture" moons through gravitational interaction. For example, the moons of Mars (Phobos and Deimos) are thought to be asteroids captured long ago by Mars. Such a definition would also deem Neptune-Triton a double planet, since Triton was a Kuiper belt body the same size and of similar composition to Pluto, later captured by Neptune.

See also

Related Research Articles

Planet Class of astronomical body directly orbiting a star or stellar remnant

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and – according to the International Astronomical Union but not all planetary scientists – has cleared its neighbouring region of planetesimals.

Solar System The Sun, its planets and their moons

The Solar System is the gravitationally bound system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, the dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the natural satellites—two are larger than the smallest planet, Mercury, and one more almost equals it in size.

Pluto Dwarf planet in the Kuiper belt of the Solar System

Pluto is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It was the first and the largest Kuiper belt object to be discovered. After Pluto was discovered in 1930, it was declared to be the ninth planet from the Sun. Beginning in the 1990s, its status as a planet was questioned following the discovery of several objects of similar size in the Kuiper belt and the scattered disc, including the dwarf planet Eris. This led the International Astronomical Union (IAU) in 2006 to formally define the term planetexcluding Pluto and reclassifying it as a dwarf planet.

Charon (moon) Largest natural satellite of Pluto

Charon, known as (134340) Pluto I, is the largest of the five known natural satellites of the dwarf planet Pluto. It has a mean radius of 606 km (377 mi). Charon is the sixth-largest known trans-Neptunian object after Pluto, Eris, Haumea, Makemake and Gonggong. It was discovered in 1978 at the United States Naval Observatory in Washington, D.C., using photographic plates taken at the United States Naval Observatory Flagstaff Station (NOFS).

Natural satellite Astronomical body that orbits a planet

A natural satellite is in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small solar system body. Natural satellites are often colloquially referred to as moons, a derivation from the Moon of Earth.

Minor-planet moon Natural satellite of a minor planet

A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. As of November 2021, there are 447 minor planets known or suspected to have moons. Discoveries of minor-planet moons are important because the determination of their orbits provides estimates on the mass and density of the primary, allowing insights of their physical properties that is generally not otherwise possible.

A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter (also see animated examples). More restrictive definitions require that this common center of mass is not located within the interior of either object, in order to exclude the typical planet–satellite systems and planetary systems.

Definition of <i>planet</i> History of the word "planet" and its definition

The definition of planet, since the word was coined by the ancient Greeks, has included within its scope a wide range of celestial bodies. Greek astronomers employed the term asteres planetai, "wandering stars", for star-like objects which apparently moved over the sky. Over the millennia, the term has included a variety of different objects, from the Sun and the Moon to satellites and asteroids.

Moons of Pluto Natural satellite orbiting Pluto

The dwarf planet Pluto has five natural satellites. In order of distance from Pluto, they are Charon, Styx, Nix, Kerberos, and Hydra. Charon, the largest, is mutually tidally locked with Pluto, and is massive enough that Pluto–Charon is sometimes considered a double dwarf planet.

Dwarf planet Planetary-mass object

A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun – something smaller than any of the eight classical planets, but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to planetary geologists is that, being possibly differentiated and geologically active bodies, they may display planetary geology, an expectation borne out by the Dawn mission to Ceres and the New Horizons mission to Pluto in 2015.

IAU definition of <i>planet</i> Formal definition of a planet in the context of the Solar System as ratified by the IAU in 2006

The International Astronomical Union (IAU) defined in August 2006 that, in the Solar System, a planet is a celestial body that:

  1. is in orbit around the Sun,
  2. has sufficient mass to assume hydrostatic equilibrium, and
  3. has "cleared the neighbourhood" around its orbit.
Small Solar System body Object in the Solar System

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies' ".

"Clearing the neighbourhood" around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.

Primary (astronomy)

A primary is the main physical body of a gravitationally bound, multi-object system. This object constitutes most of that system's mass and will generally be located near the system's barycenter.

Planetary mass is a measure of the mass of a planet-like object. Within the Solar System, planets are usually measured in the astronomical system of units, where the unit of mass is the solar mass (M), the mass of the Sun. In the study of extrasolar planets, the unit of measure is typically the mass of Jupiter (MJ) for large gas giant planets, and the mass of Earth (MEarth) for smaller rocky terrestrial planets.

Planetary-mass moon Moons comparable in size to small planets

A planetary-mass moon is a planetary-mass object that is also a natural satellite. They are large and ellipsoidal in shape. Two moons in the Solar System are larger than the planet Mercury : Ganymede and Titan, and seven are larger and more massive than the dwarf planet Pluto.

Satellite system (astronomy) Set of gravitationally bound objects in orbit

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own. Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary, or less commonly by the name of their primary. Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite.

Under a geophysical definition, any planetary-mass object is a planet. There are various definitions in use among professional planetary scientists and astronomers.


Informational notes

  1. Asimov uses the term "concave" to describe the Earth–Moon orbital pattern around the Sun, whereas Aslaksen uses "convex" to describe the exact same pattern. Which term one uses relies solely upon the perspective of the observer. From the point-of-view of the Sun, the Moon's orbit is concave; from outside the Moon's orbit, say, from planet Mars, it is convex.


  1. Most Milky Way Stars Are Single, Harvard-Smithsonian Center for Astrophysics
  2. Canup, Robin M.; Ward, William R. (June 2006). "A common mass scaling for satellite systems of gaseous planets". Nature. 441 (7095): 834–839. Bibcode:2006Natur.441..834C. doi:10.1038/nature04860. ISSN   1476-4687. PMID   16778883. S2CID   4327454.
  3. 1 2 "Welcome to the double planet". ESA. 2003-10-05. Retrieved 2009-11-12.
  4. "The IAU draft definition of "planet" and "plutons"". International Astronomical Union. 2006-08-16. Retrieved 2008-05-17.
  5. Margot, J.L. "A Quantitative Criterion for Defining Planets". Astronomical Journal. 150: 185. arXiv: 1507.06300 . Bibcode:2015AJ....150..185M. doi:10.1088/0004-6256/150/6/185.
  6. "International Astronomical Union | IAU". Retrieved 2021-09-11.
  7. "The Public Communication Activities at the 2006 General Assembly (GA)" (PDF). International Astronomical Union: 45.
  8. Herbst, T. M.; Rix, H.-W. (1999). "Star Formation and Extrasolar Planet Studies with Near-Infrared Interferometry on the LBT". In Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio (eds.). Optical and Infrared Spectroscopy of Circumstellar Matter, ASP Conference Series, Vol. 188. San Francisco, Calif.: Astronomical Society of the Pacific. pp. 341–350. Bibcode:1999ASPC..188..341H. ISBN   1-58381-014-5.
  9. 1 2 3 4 Asimov, Isaac (1975). "Just Mooning Around", collected in Of Time and Space, and Other Things . Avon. Formula derived on p. 89 of book. p. 55 of .pdf file. Retrieved 2012-01-20.
  10. Aslaksen, Helmer (2010). "The Orbit of the Moon around the Sun is Convex!". National University of Singapore: Department of Mathematics. Archived from the original on 2013-01-16. Retrieved 2012-01-23.


Further reading