G-type main-sequence star

Last updated
The Sun, a typical example of a G-type main-sequence star Sun white.jpg
The Sun, a typical example of a G-type main-sequence star

A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K. Like other main-sequence stars, a G-type main-sequence star converts the element hydrogen to helium in its core by means of nuclear fusion, but can also fuse helium when hydrogen runs out. The Sun, the star in the center of the Solar System to which the Earth is gravitationally bound, is an example of a G-type main-sequence star (G2V type). Each second, the Sun fuses approximately 600 million tons of hydrogen into helium in a process known as the proton–proton chain (4 hydrogens form 1 helium), converting about 4 million tons of matter to energy. [1] [2] Besides the Sun, other well-known examples of G-type main-sequence stars include Alpha Centauri, Tau Ceti, and 51 Pegasi. [3] [4] [5] [6]

Contents

Description

The term yellow dwarf is a misnomer, because G-type stars actually range in color from white, for more luminous types like the Sun, to only very slightly yellowish for less massive and luminous G-type main-sequence stars. [7] The Sun is in fact white, but it can often appear yellow, orange or red through Earth's atmosphere due to atmospheric Rayleigh scattering, especially at sunrise and sunset. [8] [9] [10] In addition, although the term "dwarf" is used to contrast G-type main-sequence stars with giant stars or bigger, stars similar to the Sun still outshine 90% of the stars in the Milky Way (which are largely much dimmer orange dwarfs, red dwarfs, and white dwarfs which are much more common, the latter being stellar remnants). [11]

A G-type main-sequence star with the mass of the Sun will fuse hydrogen for approximately 10 billion years, until the hydrogen element is exhausted at the center of the star. When this happens, the star rapidly expands, cooling and darkening as it passes through the subgiant branch and ultimately expanding into many times its previous size at the tip of the red giant phase, about 1 billion years after leaving the main sequence. After this, the star's degenerate helium core abruptly ignites in a helium flash fusing helium, and the star passes on to the horizontal branch, and then to the asymptotic giant branch. Expanding even further as helium starts running out as it pulses violently, the star's gravity is not sufficient to hold its outer envelope, resulting in significant mass loss and shedding. The ejected material remains as a planetary nebula, radiating as it absorbs energetic photons from the photosphere. Eventually, the core begins to fade as nuclear reactions cease, and becomes a dense, compact white dwarf, which cools slowly from its high initial temperature as the nebula fades. [12] [13]

Spectral standard stars

Properties of typical G-type main-sequence stars [14] [15]
Spectral
type
Mass (M) Radius (R) Luminosity (L) Effective
temperature

(K)
Color
index

(B − V)
G0V1.061.1001.355,9300.60
G1V1.031.0601.205,8600.62
G2V1.001.0121.025,7700.65
G3V0.991.0020.985,7200.66
G4V0.9850.9910.915,6800.67
G5V0.980.9770.895,6600.68
G6V0.970.9490.795,6000.70
G7V0.950.9270.745,5500.71
G8V0.940.9140.685,4800.73
G9V0.900.8530.555,3800.78

The revised Yerkes Atlas system (Johnson & Morgan 1953) [16] listed 11 G-type dwarf spectral standard stars; however, not all of these still exactly conform to this designation.

The "anchor points" of the MK spectral classification system among the G-type main-sequence dwarf stars, i.e. those standard stars that have remained unchanged over years, are beta CVn (G0V), the Sun (G2V), Kappa1 Ceti (G5V), 61 Ursae Majoris (G8V). [17] Other primary MK standard stars include HD 115043 (G1V) and 16 Cygni B (G3V). [18] The choices of G4 and G6 dwarf standards have changed slightly over the years among expert classifiers, but often-used examples include 70 Virginis (G4V) and 82 Eridani (G6V). There are not yet any generally agreed upon G7V and G9V standards.

Habitability

G-type main sequence stars can provide habitability for life to develop, such as the Sun with life on Earth. [19]

Planets

Besides the Sun and its planets, some of the nearest G-type stars known to have planets include 61 Virginis, HD 102365, HD 147513, 47 Ursae Majoris, Mu Arae, and Tau Ceti.

See also

Related Research Articles

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Stellar classification</span> Classification of stars based on spectral properties

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

<span class="mw-page-title-main">Red dwarf</span> Dim, low mass stars on the main sequence

A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs cannot be easily observed. From Earth, not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the star nearest to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the stars in the Milky Way.

<span class="mw-page-title-main">Giant star</span> Type of star, larger and brighter than the Sun

A giant star, also simply a giant, is a star with substantially larger radius and luminosity than a main-sequence star of the same surface temperature. They lie above the main sequence on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905.

79 Ceti, also known as HD 16141, is a binary star system located 123 light-years from the Sun in the southern constellation of Cetus. It has an apparent visual magnitude of +6.83, which puts it below the normal limit for visibility with the average naked eye. The star is drifting closer to the Earth with a heliocentric radial velocity of −51 km/s.

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

<span class="mw-page-title-main">K-type main-sequence star</span> Stellar classification

A K-type main-sequence star, also referred to as a K-type dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars and yellow/white G-type main-sequence stars. They have masses between 0.6 and 0.9 times the mass of the Sun and surface temperatures between 3,900 and 5,300 K. These stars are of particular interest in the search for extraterrestrial life due to their stability and long lifespan. Well-known examples include Alpha Centauri B and Epsilon Indi.

<span class="mw-page-title-main">F-type main-sequence star</span> Stellar classification

An F-type main-sequence star is a main-sequence, hydrogen-fusing star of spectral type F and luminosity class V. These stars have from 1.0 to 1.4 times the mass of the Sun and surface temperatures between 6,000 and 7,600 K.Tables VII and VIII. This temperature range gives the F-type stars a whitish hue when observed by the atmosphere. Because a main-sequence star is referred to as a dwarf star, this class of star may also be termed a yellow-white dwarf. Notable examples include Procyon A, Gamma Virginis A and B, and KIC 8462852.

<span class="mw-page-title-main">A-type main-sequence star</span> Stellar classification

An A-type main-sequence star or A dwarf star is a main-sequence star of spectral type A and luminosity class V (five). These stars have spectra defined by strong hydrogen Balmer absorption lines. They measure between 1.4 and 2.1 solar masses (M) and have surface temperatures between 7,600 and 10,000 K. Bright and nearby examples are Altair (A7), Sirius A (A1), and Vega (A0). A-type stars do not have convective zones and thus are not expected to harbor magnetic dynamos. As a consequence, because they do not have strong stellar winds, they lack a means to generate X-ray emissions.

<span class="mw-page-title-main">B-type main-sequence star</span> Stellar classification distinguished by bright blue luminosity

A B-type main-sequence star is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. B-type stars are extremely luminous and blue. Their spectra have strong neutral helium absorption lines, which are most prominent at the B2 subclass, and moderately strong hydrogen lines. Examples include Regulus and Algol A.

<span class="mw-page-title-main">Solar analog</span> Star that is particularly similar to the Sun

Solar-type stars, solar analogs, and solar twins are stars that are particularly similar to the Sun. The stellar classification is a hierarchy with solar twin being most like the Sun followed by solar analog and then solar-type. Observations of these stars are important for understanding better the properties of the Sun in relation to other stars and the habitability of planets.

<span class="mw-page-title-main">Yellow supergiant</span> Star that has a supergiant luminosity class, with a spectral type of F or G

A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.

<span class="mw-page-title-main">Red giant</span> Type of large cool star that has exhausted its core hydrogen

A red giant is a luminous giant star of low or intermediate mass in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.

HD 44594 is a star in the southern constellation Puppis. It has an apparent visual magnitude of 6.64, so it can be seen with the naked eye from the southern hemisphere under good viewing conditions. Based upon parallax measurements, it is located at a distance of 85 light-years from the Earth, giving it an absolute magnitude of 4.56.

A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of hydrogen into helium. This energy in turn counterbalances the mass of the star pressing inward; a process that self-maintains the conditions in thermal and hydrostatic equilibrium. The minimum temperature required for stellar hydrogen fusion exceeds 107 K (10 MK), while the density at the core of the Sun is over 100 g/cm3. The core is surrounded by the stellar envelope, which transports energy from the core to the stellar atmosphere where it is radiated away into space.

<span class="mw-page-title-main">9 Ceti</span> Star in the constellation Cetus

9 Ceti is a star in the equatorial constellation of Cetus. It has the variable star designation BE Ceti, while 9 Ceti is the Flamsteed designation. It has an apparent visual magnitude of 6.4, which is below the limit that can be seen with the naked eye by a typical observer. Based upon parallax measurements, this star is 69.6 light years away from the Sun.

HD 133002 is a possible binary star in the northern constellation of Ursa Minor. With an apparent visual magnitude of 5.65, it is faintly visible to the naked eye. The high declination of +82.5° means it is hidden from view from most of the southern hemisphere. Parallax measurements yield an estimated distance of around 142 light years from the Sun. If it was instead positioned at a distance of 33 ly (10 pc), this would be a second magnitude star. The system is drifting closer with a heliocentric radial velocity of −44 km/s.

14 Ceti is a single star in the equatorial constellation of Cetus. It is faintly visible to the naked eye under good viewing conditions, having an apparent visual magnitude of 5.84. The distance to 14 Ceti can be estimated from its annual parallax shift of 17.4″, which puts it 187 light years away. It is moving further from the Earth with a heliocentric radial velocity of +11 km/s, having recently come no closer than 178 ly.

References

  1. "Why Does The Sun Shine?" Archived 2006-09-09 at the Wayback Machine , lecture, Barbara Ryden, Astronomy 162, Ohio State University, accessed on line June 19, 2007.
  2. "Sun" Archived 2007-06-16 at the Wayback Machine , entry at ARICNS, accessed June 19, 2007.
  3. "Alpha Centauri A" Archived 2019-04-28 at the Wayback Machine , SIMBAD query result. Accessed on line December 4, 2007.
  4. "Tau Ceti" Archived 2019-04-28 at the Wayback Machine , SIMBAD query result. Accessed on line December 4, 2007.
  5. "51 Pegasi" Archived 2019-04-28 at the Wayback Machine , SIMBAD query result. Accessed December 4, 2007.
  6. "Type G Stars". www.whillyard.com. Retrieved 2022-04-22.
  7. What Color Are the Stars? Archived 2017-08-06 at the Wayback Machine , Mitchell N. Charity's webpage, accessed November 25, 2007
  8. Cain, Frazer. "WHAT COLOR IS THE SUN?". Universe Today. Archived from the original on 2012-03-20. Retrieved 2017-11-06.
  9. "What Color is the Sun?". Stanford University. Archived from the original on 2017-10-30. Retrieved 2017-11-06.
  10. Dissanaike, George (19 October 1991). "Painting the sky red". New Scientist . 132 (1791): 31–33.
  11. "More G Stars | StarDate Online". stardate.org. Retrieved 2022-04-22.
  12. Hurley, J. R.; Pols, O. R.; Tout, C. A. (1 July 2000). "Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity". Monthly Notices of the Royal Astronomical Society. 315 (3): 543–569. arXiv: astro-ph/0001295 . Bibcode:2000MNRAS.315..543H. doi:10.1046/j.1365-8711.2000.03426.x. S2CID   18523597.
  13. "Evolution from the Main Sequence to Red Giants | Astronomy". courses.lumenlearning.com. Retrieved 2022-04-22.
  14. Pecaut, Mark J.; Mamajek, Eric E. (1 September 2013). "Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars". The Astrophysical Journal Supplement Series. 208 (1): 9. arXiv: 1307.2657 . Bibcode:2013ApJS..208....9P. doi:10.1088/0067-0049/208/1/9. ISSN   0067-0049. S2CID   119308564.
  15. Mamajek, Eric (2 March 2021). "A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence". University of Rochester, Department of Physics and Astronomy. Retrieved 5 July 2021.
  16. Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas Archived 2019-04-02 at the Wayback Machine H.L. Johnson & W.W. Morgan, 1953, Astrophysical Journal, 117, 313
  17. MK ANCHOR POINTS Archived 2019-06-25 at the Wayback Machine , Robert F. Garrison
  18. The Perkins Catalog of Revised MK Types for the Cooler Stars Archived 2017-10-11 at the Wayback Machine , P.C. Keenan & R.C McNeil, "Astrophysical Journal Supplement Series" 71 (October 1989), pp. 245266.
  19. Mullen, Leslie (18 May 2001). "Galactic Habitable Zones". Astrobiology Magazine. Archived from the original on 7 August 2011. Retrieved 1 June 2020.

Commons-logo.svg Media related to Yellow dwarfs at Wikimedia Commons