List of the most distant astronomical objects

Last updated

MoM-z14 has been determined to be at a redshift of 14.44, making it the record-holder for the most distant known galaxy as of May 2025. This corresponds to a time less than 280 million years after the Big Bang. MoM-z14 Naidu et al. 2025.png
MoM-z14 has been determined to be at a redshift of 14.44, making it the record-holder for the most distant known galaxy as of May 2025. This corresponds to a time less than 280 million years after the Big Bang.

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

Contents

For comparisons with the years after the Big Bang of the astronomical objects listed below, the age of the universe is currently estimated as 13.787 ± 0.020 Gyr. [2]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

The lookback time of extragalactic observations by their cosmological redshift up to z=20. Look-back time by redshift.png
The lookback time of extragalactic observations by their cosmological redshift up to z=20.

The proper distance provides a measurement of how far a galaxy is at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one: . The proper distance represents the distance obtained as if one were able to freeze the flow of time (set in the FLRW metric) and walk all the way to a galaxy while using a meter stick. [4] For practical reasons, the proper distance is calculated as the distance traveled by light (set in the FLRW metric) from the time of emission by a galaxy to the time an observer (on Earth) receives the light signal. It differs from the "light travel distance" since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c. [5]

Most distant spectroscopically-confirmed objects

Note that the value for the age of the universe has increased over the last ~20yrs. A press release from the Subaru Telescope for the discovery of IOK-1 in 2006 has an estimate of 13.66 billion years, [73] whereas the current Planck estimate is 13.787 billion yrs. [2]

Candidate most distant objects

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared. [74] [75] Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012. [76] Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers. [77] [78]

List of most distant objects by type

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

See also

References

  1. 1 2 Naidu, Rohan P.; et al. (2025). "A Cosmic Miracle: A Remarkably Luminous Galaxy at zspec = 14.44 Confirmed with JWST". arXiv: 2505.11263v1 [astro-ph.GA].
  2. 1 2 Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics. 641. page A6 (see PDF page 15, Table 2: "Age/Gyr", last column). arXiv: 1807.06209 . Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. S2CID   119335614.
  3. S.V. Pilipenko (2013–2021) "Paper-and-pencil cosmological calculator" using Fortran-90 code
  4. Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN   978-1-107-19789-3.
  5. Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv: astro-ph/0310808 . Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. ISSN   1323-3580. S2CID   13068122.
  6. Lea, Robert (30 May 2025). "Cosmic miracle!' James Webb Space Telescope discovers the earliest galaxy ever seen". Space.com . Archived from the original on 27 August 2025. Retrieved 16 September 2025. detecting a galaxy that existed just 280 million years after the Big Bang
  7. Amos, Jonathan (31 May 2024). "Earliest and most distant galaxy ever observed". BBC . Archived from the original on 8 August 2025. Retrieved 16 September 2025. was spied as it was a mere 290 million years after the Big Bang
  8. Carniani, S.; D'Eugenio, F.; Ji, X.; Parlanti, Eleonora; Scholtz, J.; Sun, F.; Venturi, Giacomo; Bakx, T. J. L. C.; Curti, M.; Maiolino, R.; Tacchella, S.; Zavala, J. A.; Hainline, K.; Witstok, J.; Johnson, B. D.; Alberts, S. (8 April 2025). "The eventful life of a luminous galaxy at z = 14: metal enrichment, feedback, and low gas fraction?". Astronomy & Astrophysics . 696: 14. arXiv: 2409.20533v2 . Bibcode:2025A&A...696A..87C. doi: 10.1051/0004-6361/202452451 .
  9. Carniani, S.; et al. (2024-05-28). "A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ~ 14". Astrophysical Journal . 633 (8029): 318–322. arXiv: 2405.18485 . doi:10.1038/s41586-024-07860-9. PMC   11390484 . PMID   39074505. galaxies were already in place 300 million years after the Big Bang
  10. Carniani, S.; et al. (2024-05-28). "A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ~ 14". Astrophysical Journal . 633 (8029): 318–322. arXiv: 2405.18485 . doi:10.1038/s41586-024-07860-9. PMC   11390484 . PMID   39074505.
  11. Carpineti, Alfredo (9 December 2022). "JWST Confirms One Of The Furthest Galaxies Ever Discovered". IFLScience . Archived from the original on 7 April 2024. Retrieved 16 September 2025. One of them was in place just 330 million years after the Big Bang
  12. 1 2 3 4 5 Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv: 2212.04480 . Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID   257968812.
  13. 1 2 Cooper, Keith (14 November 2023). "James Webb Space Telescope finds 2 of the most distant galaxies ever seen". space.com . Retrieved 13 September 2025. as it existed just 330 million years after the Big Bang
  14. 1 2 Wang, Bingjie; et al. (2023-11-13). "UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies". The Astrophysical Journal Letters. 957 (2): L34. arXiv: 2308.03745 . Bibcode:2023ApJ...957L..34W. doi: 10.3847/2041-8213/acfe07 . ISSN   2041-8205.
  15. "JADES-GS-z13-1 in the GOODS-S field (NIRCam image, annotated)". ESA . 26 March 2025. Archived from the original on 19 May 2025. Retrieved 16 September 2025. observed just 330 million years after the Big Bang
  16. Wistok, Joris (2025). "Witnessing the onset of reionization through Lyman-α emission at redshift 13". Nature. 639 (8056): 897–901. arXiv: 2408.16608 . Bibcode:2025Natur.639..897W. doi:10.1038/s41586-025-08779-5. hdl:11384/152525. PMC   11946913 . PMID   40140594.
  17. D’Eugenio, F.; Maiolino, R.; Carniani, S.; Chevallard (9 September 2024). "JADES: Carbon enrichment 350 Myr after the Big Bang". Astronomy & Astrophysics . 689: 16. arXiv: 2311.09908v1 . doi:10.1051/0004-6361/202348636.
  18. 1 2 3 Bunker, Andrew J.; et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy". Astronomy & Astrophysics. 677: A88. arXiv: 2302.07256 . Bibcode:2023A&A...677A..88B. doi:10.1051/0004-6361/202346159. S2CID   256846361.
  19. "ALMA Confirms Discovery of Oxygen-Rich Galaxy in Very Early Universe". sci.news. 25 January 2023. Retrieved 13 September 2025. we see the galaxy as it was just 367 million years after the Big Bang
  20. Zavala, J.A.; Bakx, T.; Mitsuhashi, I.; Castellano, M.; Calabro, A.; Akins, H. (10 December 2024). "ALMA Detection of [O iii] 88 μm at z = 12.33: Exploring the Nature and Evolution of GHZ2 as a Massive Compact Stellar System". The Astrophysical Journal . 977 (1): L9. arXiv: 2411.03593v1 . Bibcode:2024ApJ...977L...9Z. doi: 10.3847/2041-8213/ad8f38 . report a successful detection of the rest-frame 88 μm atomic transition from doubly ionized oxygen at z = 12.3327 ± 0.0035
  21. Matson, John (13 November 2012). "Shifty Sightings: Hubble Images Reveal 7 of the Most Distant Galaxies Ever Seen". Scientific American . Retrieved 13 September 2025. corresponding to 380 million years after the big bang
  22. Lea, Robert (17 August 2023). "James Webb Space Telescope confirms 'Maisie's galaxy' is one of the earliest ever seen". space.com . Archived from the original on 19 August 2023. Retrieved 16 September 2025. was just around 390 million years old
  23. Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus; Dunlop, James S.; Fernández, Vital; Fujimoto, Seiji; Jung, Intae; Krips, Melanie; Larson, Rebecca L.; Papovich, Casey (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe". Nature. 622 (7984): 707–711. arXiv: 2303.15431 . Bibcode:2023Natur.622..707A. doi:10.1038/s41586-023-06521-7. ISSN   0028-0836. PMID   37579792. S2CID   257766818.
  24. Blue, Charles (19 September 2023). "Peering Back to the Early Universe: A Story of Confirmation and Refutation". NOIRLab . Archived from the original on 12 May 2025. Retrieved 16 September 2025. 410 million years after the Big Bang
  25. Harikane, Y.; Nakajima, K.; Ouchi, M.; Umeda, H.; Isobe, Y.; Ono, Y.; Xu, Y.; Zhang, Y. (22 December 2023). "Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History from 25 Galaxies at zspec = 8.61–13.20 Confirmed with JWST/NIRSpec". The Astrophysical Journal . 960 (1): 22. arXiv: 2304.06658v3 . Bibcode:2024ApJ...960...56H. doi: 10.3847/1538-4357/ad0b7e .
  26. Bunker, Andrew J.; Saxena, Aayush; Cameron, Alex J.; Willott, Chris J. (September 2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy". Astronomy & Astrophysics . 677: A88. arXiv: 2302.07256 . Bibcode:2023A&A...677A..88B. doi:10.1051/0004-6361/202346159. S2CID   256846361. a remarkable galaxy with extreme properties seen 430 Myr after the Big Bang
  27. 1 2 Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal . 819 (2). 129. arXiv: 1603.00461 . Bibcode:2016ApJ...819..129O. doi: 10.3847/0004-637X/819/2/129 . S2CID   119262750.
  28. 1 2 Jiang, Linhua; et al. (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957". Nature Astronomy. 5 (3): 256–261. arXiv: 2012.06936 . Bibcode:2021NatAs...5..256J. doi:10.1038/s41550-020-01275-y. S2CID   229156468.
  29. "JADES-GS+053.15884-27.77349". SIMBAD . June 2025. Retrieved 3 June 2025. [BIL2011] (Bouwens+Illengworth+Labbe+, 2011)
  30. Colleen, Juliette; Lawler, Daniel (6 April 2023). "JWST Captures Details of The Four Most Distant Galaxies Ever Seen". ScienceAlert . Retrieved 14 September 2023. which dates from 450 million years after the Big Bang
  31. "Ultra-Faint Dwarf Galaxy Spotted Just 480 Million Years after Big Bang". Sci.News. 3 June 2023. Retrieved 13 September 2025. 480 Million Years after Big Bang
  32. Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Grillo, Claudio; Kelly, Patrick L.; Merlin, Emiliano; Paris, Diego; Rosati, Piero; Acebron, Ana (2023). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST". Nature Astronomy. 618 (7965): 480–483. arXiv: 2210.15639 . Bibcode:2023Natur.618..480R. doi:10.1038/s41586-023-05994-w. PMID   37198479. S2CID   258741077.
  33. Lea, Robert (15 March 2024). "Speck of light glimpsed by Hubble is truly an enormous old galaxy, James Webb Space Telescope reveals". space.com . Retrieved 13 September 2025. seen as it was just 510 million years after the Big Bang
  34. Boyett, Kristan; Trenti, Michele; Leethochawalit, Nicha; Calabró, Antonello; Metha, Benjamin; Roberts-Borsani, Guido; Dalmasso, Nicoló; Yang, Lilan; Santini, Paola; Treu, Tommaso; Jones, Tucker; Henry, Alaina; Mason, Charlotte A.; Morishita, Takahiro; Nanayakkara, Themiya (2024-03-07). "A massive interacting galaxy 510 million years after the Big Bang". Nature Astronomy. 8 (5): 657–672. arXiv: 2303.00306 . Bibcode:2024NatAs...8..657B. doi:10.1038/s41550-024-02218-7. ISSN   2397-3366.
  35. "NASA Telescopes Spy Ultra-Distant Galaxy". NASA . 18 September 2012. Archived from the original on 31 March 2025. Retrieved 16 September 2025. universe was just 500 million years old
  36. T. Hashimoto; N. Laporte; K. Mawatari; R. S. Ellis; A. K. Inoue; E. Zackrisson; G. Roberts-Borsani; W. Zheng; Y. Tamura; F. E. Bauer; T. Fletcher; Y. Harikane; B. Hatsukade; N. H. Hayatsu; Y. Matsuda; H. Matsuo; T. Okamoto; M. Ouchi; R. Pello; C. Rydberg; I. Shimizu; Y. Taniguchi; H. Umehata; N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature. 557 (7705): 312–313. arXiv: 1805.05966 . Bibcode:2018Natur.557..392H. doi:10.1038/s41586-018-0117-z. PMID   29765123. S2CID   21702406.
  37. Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A. (22 August 2023). "A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars". The Astrophysical Journal Letters . 953 (2): L29. arXiv: 2303.08918v2 . Bibcode:2023ApJ...953L..29L. doi: 10.3847/2041-8213/ace619 .
  38. Adi Zitrin; Ivo Labbe; Sirio Belli; Rychard Bouwens; Richard S. Ellis; Guido Roberts-Borsani; Daniel P. Stark; Pascal A. Oesch; Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal. 810 (1): L12. arXiv: 1507.02679 . Bibcode:2015ApJ...810L..12Z. doi:10.1088/2041-8205/810/1/L12. S2CID   11524667.
  39. 1 2 3 Curti, Mirko; et al. (January 2023). "The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8". Monthly Notices of the Royal Astronomical Society. 518 (1): 425–438. arXiv: 2207.12375 . Bibcode:2023MNRAS.518..425C. doi: 10.1093/mnras/stac2737 .
  40. 1 2 3 Carnall, A. C.; et al. (January 2023). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L45 –L50. arXiv: 2207.08778 . Bibcode:2023MNRAS.518L..45C. doi: 10.1093/mnrasl/slac136 .
  41. 1 2 3 Schaerer, D.; et al. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs". Astronomy & Astrophysics. 665: 6. arXiv: 2207.10034 . Bibcode:2022A&A...665L...4S. doi:10.1051/0004-6361/202244556. S2CID   252175886. L4.
  42. 1 2 3 Katz, Harley; et al. (January 2023). "First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007". Monthly Notices of the Royal Astronomical Society. 518 (1): 592–603. arXiv: 2207.13693 . Bibcode:2023MNRAS.518..592K. doi: 10.1093/mnras/stac2657 .
  43. "Ancient Stardust Sheds Light on the First Stars". European Southern Observatory (Press release). 8 March 2017. Archived from the original on 2 December 2024. Retrieved 16 September 2025. the Universe was only 600 million years old
  44. Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal. 832 (2): L21. arXiv: 1703.02039 . Bibcode:2017ApJ...837L..21L. doi: 10.3847/2041-8213/aa62aa . S2CID   51841290.
  45. "The rise and fall of Ziggy star formation and the rich dust from ancient stars". Science Daily. 19 March 2019. Retrieved 13 September 2025. which is only 600 million years after the Big Bang
  46. Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T.; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal. 874 (1): 27. arXiv: 1806.04132 . Bibcode:2019ApJ...874...27T. doi: 10.3847/1538-4357/ab0374 . S2CID   55313459.
  47. Atkinson, Nancy (28 October 2009). "More Observations of GRB 090423, the Most Distant Known Object in the Universe". Universe Today . Retrieved 14 September 2025. occurred 630 million years after the Big Bang
  48. 1 2 3 4 Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv: 0906.1577 . Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID   19865165. S2CID   205218350.
  49. 1 2 Langeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi; Broadhurst, Tom; Diego, Jose M.; Huang, Xiaosheng; Filippenko, Alexei V.; Foley, Ryan J.; Jha, Saurabh; Koekemoer, Anton M.; Oguri, Masamune; Perez-Fournon, Ismael; Pierel, Justin; Poidevin, Frederick; Strolger, Lou (25 October 2023). "Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe". The Astrophysical Journal. 957 (39): 23. arXiv: 2212.02491v2 . Bibcode:2023ApJ...957...39L. doi: 10.3847/1538-4357/acdbc1 .
  50. Borenstein, Seth (5 May 2015). "Astronomers find farthest galaxy: 13.1 billion light-years". Associated Press . Retrieved 14 September 2015. from about 670 million years after the Big Bang
  51. P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; I. Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit; M. Franx; I. Labbe; V. Gonzalez; D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal. 804 (2): L30. arXiv: 1502.05399 . Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID   55115344.
  52. Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal. 826 (2): 113. arXiv: 1602.02160 . Bibcode:2016ApJ...826..113S. doi: 10.3847/0004-637X/826/2/113 . S2CID   51806693.
  53. "Astronomers have discovered the earliest known supermassive black hole at the center of an ancient, faraway galaxy". Business Insider . 13 January 2021. Retrieved 14 September 2025. just 670 million years after the Big Bang
  54. Wang, Feige; Yang, Jinyi; Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021). "A Luminous Quasar at Redshift 7.642". The Astrophysical Journal. 907 (1): L1. arXiv: 2101.03179 . Bibcode:2021ApJ...907L...1W. doi: 10.3847/2041-8213/abd8c6 . S2CID   231572944.
  55. Choi, Charles Q. (6 December 2017). "Oldest Monster Black Hole Ever Found Is 800 Million Times More Massive Than the Sun". space.com . Retrieved 14 September 2025. formed just 690 million years after the Big Bang
  56. Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature . 553 (7689): 473–476. arXiv: 1712.01860 . Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID   29211709. S2CID   205263326.
  57. "Texas Astronomer Discovers Most Distant Known Galaxy". University of Texas . 23 October 2013. Archived from the original on 9 July 2025. Retrieved 16 September 2025. at a time just 700 million years after the Big Bang
  58. S. L. Finkelstein; C. Papovich; M. Dickinson; M. Song; V. Tilvi; A. M. Koekemoer; K. D. Finkelstein; B. Mobasher; H. C. Ferguson; M. Giavalisco; N. Reddy; M. L. N. Ashby; A. Dekel; G. G. Fazio; A. Fontana; N. A. Grogin; J.-S. Huang; D. Kocevski; M. Rafelski; B. J. Weiner; S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature . 502 (7472): 524–527. arXiv: 1310.6031 . Bibcode:2013Natur.502..524F. doi:10.1038/nature12657. PMID   24153304. S2CID   4448085.
  59. "Hubble finds strong contender for galaxy distance record". European Space Agency . 12 February 2008. Archived from the original on 21 June 2025. Retrieved 16 September 2025. just 700 million years after the beginning
  60. Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization". Nature. 519 (7543): 327–330. arXiv: 1503.00002 . Bibcode:2015Natur.519..327W. doi:10.1038/nature14164. PMID   25731171. S2CID   2514879.
  61. Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal. 858 (2): 113. arXiv: 1712.05807 . Bibcode:2018ApJ...858...94L. doi: 10.3847/1538-4357/aab893 . S2CID   119257857.
  62. "NASA telescopes help find rare galaxy at dawn of time". astronomy.com . 27 December 2011. Retrieved 14 September 2025. a mere 750 million years after our universe was created
  63. 1 2 Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal. 744 (2): 83. arXiv: 1107.3159 . Bibcode:2012ApJ...744...83O. doi:10.1088/0004-637X/744/2/83. S2CID   119306980.
  64. "Newfound Galaxy May Be Most Distant Ever Seen". space.com . 14 June 2012. Retrieved 14 September 2025. existed around 800 million years after the Big Bang
  65. Inoue, Akio K.; et al. (June 2016). "Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch" (PDF). Science. 352 (6293): 1559–1562. arXiv: 1606.04989 . Bibcode:2016Sci...352.1559I. doi:10.1126/science.aaf0714. PMID   27312046. S2CID   206646433.
  66. "ALMA witnesses assembly of galaxy in early Universe". European Southern Observatory . 22 July 2015. Archived from the original on 9 September 2025. Retrieved 16 September 2025. when the Universe was less than 800 million years old
  67. 1 2 Vanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters . 730 (2): L35. arXiv: 1011.5500 . Bibcode:2011ApJ...730L..35V. doi:10.1088/2041-8205/730/2/L35. S2CID   53459241.
  68. "Astronomers find universe's most distant quasar". phys.org . 29 June 2022. Retrieved 14 September 2025. only 770 million years after the Big Bang
  69. Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature. 474 (7353): 616–619. arXiv: 1106.6088 . Bibcode:2011Natur.474..616M. doi:10.1038/nature10159. PMID   21720366. S2CID   2144362.
  70. Schenker, Matthew A.; et al. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8". The Astrophysical Journal. 744 (2): 7. arXiv: 1107.1261 . Bibcode:2012ApJ...744..179S. doi:10.1088/0004-637X/744/2/179. S2CID   119244384.
  71. Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Maiolino, M.; Moorwood, A.; Santini, P. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal. 725 (2): L205. arXiv: 1010.2754 . Bibcode:2010ApJ...725L.205F. doi:10.1088/2041-8205/725/2/L205. S2CID   119270473.
  72. "Cosmic Archeology Uncovers the Universe's Dark Ages". The Subaru Telescope (Press release). 13 September 2006. Archived from the original on 14 December 2024. Retrieved 16 September 2025. In this case, 780 million years after the Big Bang
  73. "Cosmic Archeology Uncovers the Universe's Dark Ages". The Subaru Telescope (Press release). 13 September 2006. Archived from the original on 14 December 2024. Retrieved 16 September 2025. the universe came into existence about 13.66 billion years ago
  74. 1 2 3 4 5 6 7 8 9 10 11 Adams, N. J.; et al. (November 2022). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv: 2207.11217 . Bibcode:2023MNRAS.518.4755A. doi: 10.1093/mnras/stac3347 .
  75. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv: 2207.11558 . Bibcode:2023ApJ...942L...9Y. doi: 10.3847/2041-8213/aca80c .
  76. Garth Illingworth; Rychard Bouwens; Pascal Oesch; Ivo Labbe; Dan Magee (December 2012). "Our Latest Results". FirstGalaxies. Retrieved March 10, 2016.
  77. 1 2 Harikane, Yuichi; et al. (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv: 2208.01612 . Bibcode:2023ApJS..265....5H. doi: 10.3847/1538-4365/acaaa9 . S2CID   251253150.
  78. 1 2 Fujimoto, Seiji; et al. (2023). "ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?". The Astrophysical Journal. 955 (2): 130. arXiv: 2211.03896 . Bibcode:2023ApJ...955..130F. doi: 10.3847/1538-4357/aceb67 .
  79. Gandolfi, Giovanni (1 September 2025). "Mysteries of Capotauro - investigating the puzzling nature of an extreme F356W-dropout". arXiv: 2509.01664v1 [astro-ph.GA].
  80. P. G., Pérez-González; G., Östlin; L., Costantin; J., Melinder; Steven L., Finkelstein; Rachel S., Somerville; Marianna, Annunziatella; Javier, Álvarez-Márquez (24 July 2025). "The rise of the galactic empire: luminosity functions at z ∼ 17 and z ∼ 25 estimated with the MIDIS+NGDEEP ultra-deep JWST/NIRCam dataset". p. 16. arXiv: 2503.15594v3 [astro-ph.GA].
  81. 1 2 Morishita, Takahiro; Stiavelli, Massimo (2023). "Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323". The Astrophysical Journal Letters. 946 (2): L35. arXiv: 2207.11671v2 . Bibcode:2023ApJ...946L..35M. doi: 10.3847/2041-8213/acbf50 . S2CID   254220684.
  82. Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv: 2208.01612v3 . Bibcode:2023ApJS..265....5H. doi: 10.3847/1538-4365/acaaa9 . S2CID   251253150.
  83. 1 2 3 4 Hakim, Atek; et al. (November 2022). "Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723". Monthly Notices of the Royal Astronomical Society. 519 (1): 1201–1220. arXiv: 2207.12338 . Bibcode:2023MNRAS.519.1201A. doi: 10.1093/mnras/stac3144 .
  84. 1 2 3 4 5 Ethan Siegel (21 May 2025). "JWST breaks its own record with new most distant galaxy MoM-z14". Big Think.
  85. 1 2 Isaac Schultz (24 May 2025). "Image Reveals the Most Distant Galaxy Ever Seen, From Just 280 Million Years After the Big Bang". Gizmodo.
  86. Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van Der Burg, Remco; Zanella, Anita; Cisela, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Xanxia (2016). "Discovery of a galaxy cluster with a violently starbursting core at z=2.506". The Astrophysical Journal. 828 (1): 56. arXiv: 1604.07404 . Bibcode:2016ApJ...828...56W. doi: 10.3847/0004-637X/828/1/56 . S2CID   8771287.
  87. Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fevre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K-G.; Bardelli, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Lubin, L. M.; Amorin, R.; Cassara', L. P.; Cimatti, A.; Talia, M.; Vergani, D.; Koekemoer, A.; Pforr, J.; Salvato, M. (2018). "The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS". Astronomy & Astrophysics . 619: A49. arXiv: 1806.06073 . Bibcode:2018A&A...619A..49C. doi:10.1051/0004-6361/201833655. S2CID   119472428.
  88. Morishita, Takahiro; Roberts-Borsani, Guido; Treu, Tommaso; Brammer, Gabriel; Mason, Charlotte A.; Trenti, Michele; Vulcani, Benedetta; Wang, Xin; Acebron, Ana; Bahé, Yannick; Bergamini, Pietro; Boyett, Kristan; Bradac, Marusa; Calabrò, Antonello; Castellano, Marco; Chen, Wenlei; De Lucia, Gabriella; Filippenko, Alexei V.; Fontana, Adriano; Glazebrook, Karl; Grillo, Claudio; Henry, Alaina; Jones, Tucker; Kelly, Patrick L.; Koekemoer, Anton M.; Leethochawalit, Nicha; Lu, Ting-Yi; Marchesini, Danilo; Mascia, Sara; Mercurio, Amata; Merlin, Emiliano; Metha, Benjamin; Nanayakkara, Themiya; Nonino, Mario; Paris, Diego; Pentericci, Laura; Santini, Paola; Strait, Victoria; Vanzella, Eros; Windhorst, Rogier A.; Rosati, Piero; Xie, Lizhi (30 January 2023). "Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang". Astrophysical Journal Letters. 947 (2). arXiv: 2211.09097 . Bibcode:2023ApJ...947L..24M. doi: 10.3847/2041-8213/acb99e . S2CID   253553396.
  89. Bogdán, Ákos; et al. (2023-11-06), "Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar", Nature Astronomy, 8 (1): 126–133, arXiv: 2305.15458 , Bibcode:2024NatAs...8..126B, doi:10.1038/s41550-023-02111-9, S2CID   258887541 , retrieved 2024-08-31
  90. Bunker, Andrew J.; et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy". Astronomy & Astrophysics. 677: A88. arXiv: 2302.07256 . Bibcode:2023A&A...677A..88B. doi:10.1051/0004-6361/202346159.
  91. Robert Lea (January 17, 2024). "James Webb Space Telescope discovers oldest and most distant black hole ever seen". Space.com.
  92. Joe Pinkstone (January 17, 2024). "Oldest black hole ever seen challenges what we know about their formation". The Telegraph.
  93. Maiolino, Roberto; Scholtz, Jan; Witstok, Joris; Carniani, Stefano; D'Eugenio, Francesco; de Graaff, Anna; Übler, Hannah; Tacchella, Sandro; Curtis-Lake, Emma; Arribas, Santiago; Bunker, Andrew; Charlot, Stéphane; Chevallard, Jacopo; Curti, Mirko; Looser, Tobias J.; Maseda, Michael V.; Rawle, Timothy D.; Rodríguez del Pino, Bruno; Willott, Chris J.; Egami, Eiichi; Eisenstein, Daniel J.; Hainline, Kevin N.; Robertson, Brant; Williams, Christina C.; Willmer, Christopher N. A.; Baker, William M.; Boyett, Kristan; DeCoursey, Christa; Fabian, Andrew C.; Helton, Jakob M.; Ji, Zhiyuan; Jones, Gareth C.; Kumari, Nimisha; Laporte, Nicolas; Nelson, Erica J.; Perna, Michele; Sandles, Lester; Shivaei, Irene; Sun, Fengwu (17 January 2024). "A small and vigorous black hole in the early Universe". Nature. 627 (8002): 59–63. arXiv: 2305.12492 . Bibcode:2024Natur.627...59M. doi:10.1038/s41586-024-07052-5. hdl:11384/139005. PMC   10917688 . PMID   38232944.
  94. 1 2 NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record" Archived 2011-03-10 at the Wayback Machine , 28 April 2009
  95. 1 2 Science Codex, "GRB 090429B – most distant gamma-ray burst yet" Archived 2011-05-31 at the Wayback Machine , NASA/Goddard, 27 May 2011
  96. Welch, Brian; et al. (30 March 2022). "A highly magnified star at redshift 6.2". Nature . 603 (7903): 815–818. arXiv: 2209.14866 . Bibcode:2022Natur.603..815W. doi:10.1038/s41586-022-04449-y. PMID   35354998. S2CID   247842625 . Retrieved 30 March 2022.
  97. Gianopoulos, Andrea (30 March 2022). "Record Broken: Hubble Spots Farthest Star Ever Seen". NASA . Retrieved 30 March 2022.
  98. Camille M. Carlisle (12 April 2013). "The Most Distant Star Ever Seen?". Sky and Telescope.
  99. Kelly, Patrick L.; et al. (2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature Astronomy. 2 (4): 334–342. arXiv: 1706.10279 . Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. S2CID   119412560.
  100. Mowla, Lamiya; et al. (October 2022). "The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST". The Astrophysical Journal Letters. 937 (2): 9. arXiv: 2208.02233 . Bibcode:2022ApJ...937L..35M. doi: 10.3847/2041-8213/ac90ca . L35.
  101. Connor, Thomas; Bañados, Eduardo; Stern, Daniel; Carilli, Chris; Fabian, Andrew; Momjian, Emmanuel; Rojas-Ruiz, Sofía; Decarli, Roberto; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Earnshaw, Hannah P. (2021). "Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years". The Astrophysical Journal. 911 (2): 120. arXiv: 2103.03879 . Bibcode:2021ApJ...911..120C. doi: 10.3847/1538-4357/abe710 . S2CID   232148026.
  102. NASA.gov
  103. SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  104. ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  105. e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  106. SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  107. Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M. J. (2009-05-01). "Discovery of a Giant Lyα Emitter Near the Reionization Epoch". The Astrophysical Journal. 696 (2): 1164–1175. arXiv: 0807.4174 . Bibcode:2009ApJ...696.1164O. doi:10.1088/0004-637X/696/2/1164. ISSN   0004-637X. S2CID   15246638.
  108. Hsu, Jeremy (2009-04-22). "Giant Mystery Blob Discovered Near Dawn of Time". SPACE.com . Retrieved 2009-04-24.
  109. USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  110. Schneider, J. "Notes for star PA-99-N2". Extrasolar Planets Encyclopaedia . Archived from the original on February 6, 2010. Retrieved 2010-08-06.
  111. Exoplaneten.de, "The Microlensing Event of Q0957+561" Archived 2012-02-11 at the Wayback Machine (accessed 5 August 2010)
  112. Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B". Astrophysical Journal. 464: 125. Bibcode:1996ApJ...464..125S. doi:10.1086/177304.
  113. Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.; Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki; Díaz, C. Gonzalo (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–31. arXiv: 1211.2003 . Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID   23123848. S2CID   4397580.
  114. "Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference". www.spacetelescope.org.
  115. 1 2 Robert Lea (20 May 2024). "James Webb Space Telescope spots the most distant galaxy ever seen (image)". SPACE.com.
  116. Amos, Jonathan (3 March 2016). "Hubble sets new cosmic distance record". BBC News.
  117. Wall, Mike (5 August 2015). "Ancient Galaxy Is Most Distant Ever Found". Space.com.
  118. W. M. Keck Observatory (6 August 2015). "A new record: Keck Observatory measures most distant galaxy". Astronomy Now.
  119. Mario De Leo Winkler (15 July 2015). "The Farthest Object in the Universe". Huffington Post.
  120. 1 2 Courtland, Rachel (27 April 2009). "Most distant object in the universe spotted". New Scientist . Retrieved 2009-11-11.
  121. Shiga, David (13 September 2006). "First generation of galaxies glimpsed forming". New Scientist. Retrieved 2009-11-11.
  122. Iye, M.; Ota, K.; Kashikawa, N.; Furusawa, H.; Hashimoto, T.; Hattori, T.; Matsuda, Y.; Morokuma, T.; Ouchi, M.; Shimasaku, K. (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–188. arXiv: astro-ph/0609393 . Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID   16971942. S2CID   2876103.
  123. 1 2 Taniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5". Proceedings of the International Astronomical Union. 3 (S250): 429–436. arXiv: 0804.0644 . Bibcode:2008IAUS..250..429T. doi:10.1017/S1743921308020796. S2CID   198472.
  124. 1 2 Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; et al. (2005). "The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6" (PDF). Publications of the Astronomical Society of Japan. 57: 165–182. arXiv: astro-ph/0407542 . Bibcode:2005PASJ...57..165T. doi:10.1093/pasj/57.1.165.
  125. 1 2 "Most distant galaxy detected". BBC News. 25 March 2003.
  126. 1 2 "Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More". SpaceRef. March 24, 2003. Archived from the original on 2012-12-09.
  127. Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17. arXiv: astro-ph/0301096 . Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
  128. "New record for Universe's most distant object". New Scientist. 14 March 2002.
  129. "Far away stars light early cosmos". BBC News. 14 March 2002.
  130. Hu, E. M. (2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal. 568 (2): L75 –L79. arXiv: astro-ph/0203091 . Bibcode:2002ApJ...568L..75H. doi: 10.1086/340424 .
  131. "K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370". Hera.ph1.uni-koeln.de. 2008-04-14. Archived from the original on 2011-05-18. Retrieved 2010-10-22.
  132. Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J.; Heckman, T.; Brinkmann, J.; Lamb, D. Q.; Szokoly, G. P. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv: astro-ph/0112075 . Bibcode:2002AJ....123.2151P. doi:10.1086/340077. S2CID   119041760.
  133. Haiman, Zoltan; Cen, Renyue (20 October 2002). "A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524". The Astrophysical Journal. 578 (2): 702–707. arXiv: astro-ph/0205143 . Bibcode:2002ApJ...578..702H. doi:10.1086/342610.
  134. White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6". The Astronomical Journal. 126 (1): 1–14. arXiv: astro-ph/0303476 . Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID   51505828.
  135. Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13 –L16. arXiv: astro-ph/0406561 . Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID   14854831.
  136. 1 2 "Discovery Announced of Two Most Distant Objects". Eberly College of Science, Penn State University. 5 June 2001. Archived from the original on 2007-11-21.
  137. 1 2 "Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe". Space News (Press release). SDSS. 5 June 2001.
  138. 1 2 3 4 "International Team of Astronomers Finds Most Distant Object". Science Journal. 17 (1). Eberly College of Science, Penn State University. Summer 2000. Archived from the original on 2009-09-12.
  139. 1 2 Hu, Esther M.; McMahon, Richard G.; Cowie, Lennox L. (1999-09-01). "An Extremely Luminous Galaxy at z = 5.74". The Astrophysical Journal. 522 (1): L9 –L12. arXiv: astro-ph/9907079 . Bibcode:1999ApJ...522L...9H. doi:10.1086/312205.
  140. "X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite". Eberly College of Science, Penn State University. 1 December 2000. Archived from the original on 2007-11-21.
  141. "Confirmed High Redshift (z > 5.5) Galaxies". University of Wisconsin-Madison. 10 February 2005. Archived from the original on 2007-06-18.
  142. Lloyd, Robin (1 December 2000). "Most Distant Object in Universe Comes Closer". Space.com. Archived from the original on 2009-12-09.
  143. 1 2 3 4 5 6 Stern, Daniel; Spinrad, Hyron (December 1999). "Search Techniques for Distant Galaxies". Publications of the Astronomical Society of the Pacific . 111 (766): 1475–1502. arXiv: astro-ph/9912082 . Bibcode:1999PASP..111.1475S. doi:10.1086/316471.
  144. Wilford, John Noble (October 20, 1998). "Peering Back in Time, Astronomers Glimpse Galaxies Aborning" . The New York Times.
  145. 1 2 "A Baby Galaxy". Astronomy Picture of the Day. NASA. March 24, 1998.
  146. 1 2 Dey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34". The Astrophysical Journal. 498 (2): L93. arXiv: astro-ph/9803137 . Bibcode:1998ApJ...498L..93D. doi:10.1086/311331.
  147. "A New Most Distant Object: z = 5.34". Astro.ucla.edu. Retrieved 2010-10-22.
  148. "Behind CL1358+62: A New Farthest Object". Astronomy Picture of the Day. NASA. July 31, 1997.
  149. Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62". The Astrophysical Journal. 486 (2): L75. arXiv: astro-ph/9704090 . Bibcode:1997ApJ...486L..75F. doi:10.1086/310844. S2CID   14502310.
  150. 1 2 3 4 5 6 Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv: astro-ph/0009187 . Bibcode:1999Ap&SS.269..165I. doi:10.1023/a:1017052809781. S2CID   119363931.
  151. Schneider, Donald P.; Schmidt, Maarten; Gunn, James E. (September 1991). "PC 1247 + 3406 - an optically selected quasar with a redshift of 4.897". The Astronomical Journal. 102: 837. Bibcode:1991AJ....102..837S. doi:10.1086/115914.
  152. Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G.; Suntzeff, N. B. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4" (PDF). The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
  153. Croswell, Ken (10 October 1992). "Science: Infant galaxy's light show". New Scientist. No. 1842. p. 17.
  154. "Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar" (Press release). FermiLab. December 8, 1998. Archived from the original on 2009-09-12.
  155. 1 2 Hook, Isobel M.; McMahon, Richard G. (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.01". Monthly Notices of the Royal Astronomical Society. 294 (1): L7 –L12. arXiv: astro-ph/9801026 . Bibcode:1998MNRAS.294L...7H. doi: 10.1046/j.1365-8711.1998.01368.x .
  156. 1 2 3 4 5 Turner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects". Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
  157. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 – Quasar
  158. Cowie, Lennox L. (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO–Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID   222074763.
  159. 1 2 New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  160. 1 2 3 Warren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID   4352819.
  161. Levshakov, S. A. (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID   122978350.
  162. Wilford, John Noble (January 14, 1988). "Objects Detected in Universe May Be the Most Distant Ever Sighted" . The New York Times .
  163. Wilford, John Noble (May 10, 1988). "Astronomers Peer Deeper Into Cosmos" . The New York Times.
  164. "Object query : Q0000-26". SIMBAD .
  165. 1 2 3 4 Schmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04". Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
  166. "Object query : PC 0910+5625". SIMBAD.
  167. Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID   4335291.
  168. "Object query : Q0046-293". SIMBAD.
  169. "Object query : Q1208+1011". SIMBAD.
  170. Henbest, Nigel (16 November 1991). "Quasar doubles help to fix the Hubble constant". New Scientist.
  171. "Archived Astronomy News Items, 1972–1997". Ipswich: Orwell Astronomical Society. Archived from the original on 2009-09-12.
  172. "Object query : PKS 2000-330". SIMBAD.
  173. 1 2 "History of the OSU Radio Observatory". OSU Big Ear.
  174. "Object query : OQ172". SIMBAD.
  175. 1 2 3 "Quasars – Three Years Later". Archived from the original on 2017-01-18. Retrieved 2010-02-17.
  176. "The Edge of Night". Time . April 23, 1973. Archived from the original on 2008-12-14.
  177. "QSO B0642+449 – Quasar". SIMBAD.
  178. Warren, S. J.; Hewett, P. C. (1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003. S2CID   250880776.
  179. 1 2 Larson, Dewey Bernard (1984). "Chapter 23 – Quasar Redshifts". The Structure of the Physical Universe. Vol. III: The Universe of Motion. North Pacific Publishers. ISBN   0-913138-11-8. Archived from the original on 2008-06-19.
  180. Bahcall, John N.; Oke, J. B. (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi: 10.1086/150762 .
  181. 1 2 3 Lynds, R.; Wills, D. (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi: 10.1038/226532a0 . PMID   16057373. S2CID   28297458.
  182. "7C 105517.75+495540.95 – Quasar". SIMBAD.
  183. 1 2 Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi: 10.1086/180265 .
  184. "A Farther-Out Quasar". Time . April 7, 1967. Archived from the original on 2008-12-15.
  185. "Object query : QSO B0237-2321". SIMBAD.
  186. 1 2 3 4 Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
  187. 1 2 Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  188. SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  189. SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  190. Time Magazine, Toward the Edge of the Universe, Friday, May. 21, 1965
  191. Time Magazine, The Quasi-Quasars, Friday, Jun. 18, 1965
  192. The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  193. Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
  194. The Discovery of Radio Galaxies and Quasars, 1965
  195. Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Quasi-Stellar Sources and Gravitational Collapse: 269. Bibcode:1965qssg.conf..269S.
  196. Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM". Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
  197. "Astronomy: Finding the Fastest Galaxy: 76,000 Miles per Second". Time Magazine. Vol. 83, no. 15. April 10, 1964.
  198. Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
  199. "The Discovery of Radio Galaxies and Quasars" . Retrieved 2010-10-22.
  200. McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies". Annual Review of Astronomy and Astrophysics. 31: 639–688. Bibcode:1993ARA&A..31..639M. doi:10.1146/annurev.aa.31.090193.003231.
  201. 1 2 Sandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models". Astrophysical Journal. 133: 355. Bibcode:1961ApJ...133..355S. doi:10.1086/147041.
  202. Hubble, E. P. (1953). "The law of red shifts (George Darwin Lecture)". Monthly Notices of the Royal Astronomical Society. 113 (6): 658–666. Bibcode:1953MNRAS.113..658H. doi: 10.1093/mnras/113.6.658 .
  203. Sandage, Allan. "Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation". Annu. Rev. Astron. Astrophys. 1988 (26): 561–630.
  204. Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae". Astronomical Journal. 61: 97. Bibcode:1956AJ.....61...97H. doi:10.1086/107297.
  205. 1 2 3 "1053 May 8 meeting of the Royal Astronomical Society". The Observatory. 73: 97. 1953. Bibcode:1953Obs....73...97.
  206. Merrill, Paul W. (1958). "From Atoms to Galaxies". Astronomical Society of the Pacific Leaflets. 7 (349): 393. Bibcode:1958ASPL....7..393M.
  207. 1 2 Humason, M. L. (January 1936). "The Apparent Radial Velocities of 100 Extra-Galactic Nebulae". The Astrophysical Journal. 83: 10. Bibcode:1936ApJ....83...10H. doi: 10.1086/143696 .
  208. "The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  209. 1 2 Chant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)". Journal of the Royal Astronomical Society of Canada. 26: 180. Bibcode:1932JRASC..26..180C.
  210. Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae". The Astrophysical Journal. 74: 35. Bibcode:1931ApJ....74...35H. doi:10.1086/143287.
  211. Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". The Astrophysical Journal. 74: 43. Bibcode:1931ApJ....74...43H. doi:10.1086/143323.
  212. 1 2 Humason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae". Leaflet of the Astronomical Society of the Pacific. 1 (37): 149. Bibcode:1931ASPL....1..149H.
  213. 1 2 Humason, M. L. (1930). "The Rayton short-focus spectrographic objective". Astrophysical Journal. 71: 351. Bibcode:1930ApJ....71..351H. doi: 10.1086/143255 .
  214. 1 2 3 4 Trimble, Virginia (1996). "H_0: The Incredible Shrinking Constant, 1925–1975" (PDF). Publications of the Astronomical Society of the Pacific. 108: 1073. Bibcode:1996PASP..108.1073T. doi:10.1086/133837. S2CID   122165424.
  215. "The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929". Publications of the Astronomical Society of the Pacific. 41 (242): 244. 1929. Bibcode:1929PASP...41..244.. doi: 10.1086/123945 .
  216. 1 2 From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3; The Large Radial Velocity of N. G. C. 7619; January 17, 1929
  217. The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621; EDWIN HUBBLE 1889–1953
  218. 1 2 National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher; ISBN   0-309-03099-4
  219. Bailey, S. I. (1920). "Comet Skjellerup". Harvard College Observatory Bulletin. 739: 1. Bibcode:1920BHarO.739....1B.
  220. New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.; January 19, 1921, Wednesday
  221. 1 2 New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.; January 18, 1921, Tuesday
  222. Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  223. Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  224. Nelson Evening Mail , "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  225. "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  226. "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  227. (in German) Kosmos: Entwurf einer physischen Weltbeschreibung , Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  228. "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  229. 1 2 3 The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  230. The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  231. SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" Archived February 4, 2012, at the Wayback Machine . Retrieved 11 November 2009.
  232. Harper's New Monthly Magazine , "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)