A1703 zD6

Last updated
A1703 zD6
A1703 zD6.jpg
A1703 zD6 (top right)
Observation data (J2000 epoch)
Constellation Canes Venatici
Right ascension 13h 15m 01.0068s [1]
Declination +51° 50 04.353 [1]
Redshift 7.045 [1]
Heliocentric radial velocity 2,112,038 km/s (1,312,360 mi/s)
Galactocentric velocity2,112,133 km/s (1,312,419 mi/s)
Distance 12.9  billion   ly (4.0 billion  pc) (light travel distance)
29  billion   ly (8.9 billion  pc)
(comoving distance)
Apparent magnitude  (V)25.8J
Other designations
[BBZ2012] A1703-zD6

A1703 zD6 is a strongly lensed Lyman-alpha emitter. It is located behind a foreground galaxy cluster known as Abell 1703, hence its name. It has a spectroscopically determined redshift of over 7, [1] corresponding to a light travel time of 12.9 billion years.[ citation needed ] It is located in the Canes Venatici constellation. It was discovered in 2012, by a group led by L. D. Bradley, published in The Astrophysical Journal . [1]

The C IV emission line (with a wavelength of 1548 Å) was detected from this galaxy, signifying triply ionized carbon. Because it takes high amounts of energy to triply ionize carbon, it may suggest that A1703 zD6 has an active galactic nucleus (AGN), or a population of very young, hot, and metal-poor stars. [2] Subsequent investigations found that the ionization source is likely to be the latter: a cluster of stars (abbreviated SF, for star-forming region). [3]

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">Lyman-alpha blob</span> Astronomical object type

In astronomy, a Lyman-alpha blob (LAB) is a huge concentration of a gas emitting the Lyman-alpha emission line. LABs are some of the largest known individual objects in the Universe. Some of these gaseous structures are more than 400,000 light years across. So far they have only been found in the high-redshift universe because of the ultraviolet nature of the Lyman-alpha emission line. Since Earth's atmosphere is very effective at filtering out UV photons, the Lyman-alpha photons must be redshifted in order to be transmitted through the atmosphere.

<span class="mw-page-title-main">Lyman-alpha emitter</span>

A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen.

<span class="mw-page-title-main">Pea galaxy</span> Possible type of luminous blue compact galaxy

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

<span class="mw-page-title-main">Lyman-break galaxy</span> Star-forming galaxies at high redshift

Lyman-break galaxies are star-forming galaxies at high redshift that are selected using the differing appearance of the galaxy in several imaging filters due to the position of the Lyman limit. The technique has primarily been used to select galaxies at redshifts of z = 3–4 using ultraviolet and optical filters, but progress in ultraviolet astronomy and in infrared astronomy has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.

<span class="mw-page-title-main">UDFy-38135539</span> Distant galaxy in the constellation Fornax

UDFy-38135539 is the Hubble Ultra Deep Field (UDF) identifier for a galaxy which was calculated as of October 2010 to have a light travel time of 13.1 billion years with a present proper distance of around 30 billion light-years.

<span class="mw-page-title-main">Green bean galaxy</span> Very rare astronomical objects that are thought to be quasar ionization echos

Green bean galaxies (GBGs) are very rare astronomical objects that are thought to be quasar ionization echos. They were discovered by Mischa Schirmer and colleagues R. Diaz, K. Holhjem, N.A. Levenson, and C. Winge. The authors report the discovery of a sample of Seyfert-2 galaxies with ultra-luminous galaxy-wide narrow-line regions (NLRs) at redshifts z=0.2-0.6.

<span class="mw-page-title-main">9io9</span> Galaxy in the constellation Cetus

ASW0009io9 (9io9) is a gravitationally lensed system of two galaxies. The nearer galaxy is approximately 2 billion light-years (610 Mpc) from Earth and is designated SDSS J020941.27+001558.4, while the lensed galaxy is 10 billion light-years (3.1 Gpc) distant and is designated ASW0009io9. It was discovered in January 2014 by a group of citizen scientists, while classifying images on the website Spacewarps.org. The discovery was announced on the BBC television programme Stargazing Live.

<span class="mw-page-title-main">Tololo 1247-232</span> Galaxy in the constellation Hydra

Tololo 1247-232 is a small galaxy at a distance of 652 million light-years. It is situated in the southern equatorial constellation of Hydra. Visually, Tol 1247 appears to be an irregular or possibly a barred spiral galaxy. Tol 1247 is named after the surveys that were carried at the Cerro Tololo Inter-American Observatory (CTIO), the first of which was in 1976. It is one of nine galaxies in the local universe known to emit Lyman continuum photons.

<span class="mw-page-title-main">Haro 11</span> Galaxy in the constellation Sculptor

Haro 11 (H11) is a small galaxy at a distance of 300,000,000 light-years (redshift z=0.020598). It is situated in the southern constellation of Sculptor. Visually, it appears to be an irregular galaxy, as the ESO image to the right shows. H11 is named after Guillermo Haro, a Mexican astronomer who first included it in a study published in 1956 about blue galaxies. H11 is a starburst galaxy that has 'super star clusters' within it and is one of nine galaxies in the local universe known to emit Lyman continuum photons (LyC).

<span class="mw-page-title-main">Cosmos Redshift 7</span> Galaxy in the constellation Sextans

Cosmos Redshift 7 is a high-redshift Lyman-alpha emitter galaxy. At a redshift z = 6.6, the galaxy is observed as it was about 800 million years after the Big Bang, during the epoch of reionisation. With a light travel time of 12.9 billion years, it is one of the oldest, most distant galaxies known.

<span class="mw-page-title-main">TON 618</span> Quasar and Lyman-alpha blob in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 10.8 billion light-years from Earth. It possesses one of the most massive black holes ever found, at 40.7 billion M.

<span class="mw-page-title-main">GLASS-z12</span> Lyman-break galaxy that is one of the oldest galaxies known

GLASS-z12 is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. ALMA observations detected an emission line associated with doubly ionized oxygen at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. Also based on oxygen-related measurements, the age of the galaxy is confirmed.

<span class="mw-page-title-main">NGC 7720</span> Galaxy in the constellation Pegasus

NGC 7720 is an elliptical galaxy located in the constellation Pegasus. It is located at a distance of about 380 million light years from Earth, which, given its apparent dimensions, means that NGC 7720 is about 180,000 light years across. NGC 7720 is the main galaxy of Abell 2634 galaxy cluster and is a radio galaxy. It was discovered by William Herschel on September 10, 1784.

<span class="mw-page-title-main">IRAS 09104+4109</span> Galaxy in the constellation Lynx

IRAS 09104+4109 is a galaxy located in the constellation Lynx. With a redshift of 0.440797, the light travel time for this galaxy, corresponds to 4.8 billion light-years from Earth. It is the brightest cluster galaxy in CDGS 25, also known as WHL J091345.5+405628 and a notable, unique ultraluminous infrared galaxy.

<span class="mw-page-title-main">Abell 697 BCG</span> Brightest cluster galaxy in the constellation Lynx

Abell 697 BCG, also known as PGC 2079433, is a massive type-cD elliptical galaxy residing as the brightest cluster galaxy in Abell 697 galaxy cluster. It is located in the constellation of Lynx and has a redshift of 0.28, meaning the galaxy is located 3.5 billion light-years away from Earth.

References

  1. 1 2 3 4 5 Bradley, L. D.; Bouwens, R. J.; Zitrin, A.; Smit, R.; Coe, D.; Ford, H. C.; Zheng, W.; Illingworth, G. D.; Benítez, N.; Broadhurst, T. J. (2012). "Through the looking glass: bright, highly magnified galaxy candidates at z ~ 7 behind A1703". The Astrophysical Journal. 747 (1): 3. arXiv: 1104.2035 . Bibcode:2012ApJ...747....3B. doi:10.1088/0004-637X/747/1/3. S2CID   118567077.
  2. Stark, Daniel P.; Walth, Gregory; Charlot, Stéphane; Clément, Benjamin; Feltre, Anna; Gutkin, Julia; Richard, Johan; Mainali, Ramesh; Robertson, Brant; Siana, Brian; Tang, Mengtao; Schenker, Matthew (2015). "Spectroscopic detection of C IV λ1548 in a galaxy at z = 7.045: Implications for the ionizing spectra of reionization-era galaxies". Monthly Notices of the Royal Astronomical Society. 454 (2): 1393. arXiv: 1504.06881 . Bibcode:2015MNRAS.454.1393S. doi: 10.1093/mnras/stv1907 .
  3. Dors, O. L.; Agarwal, B.; Hägele, G. F.; Cardaci, M. V.; Rydberg, Claes-Erik; Riffel, R. A.; Oliveira, A. S.; Krabbe, A. C. (2018). "Nature and chemical abundances of a sample of Lyman-α emitter objects at high redshift". Monthly Notices of the Royal Astronomical Society. 479 (2): 2294–2307. arXiv: 1806.07732 . Bibcode:2018MNRAS.479.2294D. doi: 10.1093/mnras/sty1658 .