Protogalaxy

Last updated

In physical cosmology, a protogalaxy, which could also be called a "primeval galaxy", is a cloud of gas which is forming into a galaxy. It is believed that the rate of star formation during this period of galactic evolution will determine whether a galaxy is a spiral or elliptical galaxy; a slower star formation tends to produce a spiral galaxy. The smaller clumps of gas in a protogalaxy form into stars.

Contents

The term "protogalaxy" itself is generally accepted to mean "Progenitors of the present day (normal) galaxies, in the early stages of formation." However, the "early stages of formation" is not a clearly defined phrase. It could be defined as: "The first major burst of star formation in a progenitor of a present day elliptical galaxy"; "The peak merging epoch of dark halos of the fragments which assemble to produce an average galaxy today"; "A still gaseous body before any star formation has taken place."; or " an over-dense region of dark matter in the very early universe, destined to become gravitationally bound and to collapse." [1]

Formation

It is thought that the early universe began with a nearly uniform distribution (each particle an equal distance from the next) of matter and dark matter. The dark matter then began to clump together under gravitational attraction due to the initial density perturbation spectrum caused by quantum fluctuations. [1] This derives from Heisenberg's uncertainty principle which shows that there can be tiny temporary changes in the amount of energy in empty space.[ citation needed ] Particle/antiparticle pairs can form from this energy through mass–energy equivalence, and gravitational pull causes other nearby particles to move towards it, disturbing the even distribution and creating a centre of gravity, pulling nearby particles closer. When this happens at the universe's present size it is negligible, but the state of these tiny fluctuations as the universe began expanding from a single point left an impression which scaled up as the universe expanded, resulting in large areas of increased density. The gravity of these denser clumps of dark matter then caused nearby matter to start falling into the denser region. [2] This sort of process was reportedly observed and analysed by Nilsson et al. in 2006. [3] [4] This resulted in the formation of clouds of gas, predominantly hydrogen, and the first stars began to form within these clouds. These clouds of gas and early stars, many times smaller than our galaxy, were the first protogalaxies. [5]

An illustration showing protogalaxies colliding Stellar Fireworks Finale.jpg
An illustration showing protogalaxies colliding

The established theory is that the groups of small protogalaxies were attracted together by gravity and collided, which resulted in the formation of the much larger "adult" galaxies we have today. [5] This follows the process of hierarchical assembly, which is an ongoing process where larger bodies are continually formed from the merging of smaller ones. [1] [6]

Properties

Composition

Since there had been no previous star formation to create other elements, protogalaxies would have been made up almost entirely of hydrogen and helium. The hydrogen would bond to form H2 molecules, with some exceptions. [7] This would change as star formation began and produced more elements through the process of nuclear fusion.

Mechanics

Once a protogalaxy begins to form, all particles bound by its gravity begin to free fall towards it. The time taken for this free-fall to conclude can be approximated using the free-fall equations. Most galaxies have completed this free-fall stage to become stable elliptical or disk galaxies, the disks taking longer to fully form. The formation of galaxy clusters takes much longer and is still in progress now. [1] This stage is also where galaxies acquire most of their angular momentum. A protogalaxy acquires this due to gravitational influence from neighbouring dense clumps in the early universe, and the further the gas is away from the centre, the more spin it gets. [8]

Luminosity

The luminosity of protogalaxies comes from two sources. First and foremost is the radiation from nuclear fusion of Hydrogen into helium in early stars. This early burst of star formation is thought to have made a protogalaxy's luminosity comparable to a present-day starburst galaxy or a quasar. The other is the release of excess gravitational binding energy. [1] The primary wavelength expected from a protogalaxy is a variety of UV called Lyman-alpha, which is the wavelength emitted by Hydrogen gas when it is ionised by radiation from a star. [1] [5]

Detection

Protogalaxies can theoretically still be seen today, as the light from the farthest reaches of the universe takes a very long time to reach Earth, in some places long enough that we see them at the stage where they are populated by protogalaxies. There have been many attempts to find protogalaxies with telescopes over the last 30 years because of the value of such a discovery in confirming how galaxies form, but the sheer distance any light would have to travel for it to be old enough to come from a protogalaxy is very large. This, coupled with the fact that the Lyman-alpha wavelength is quite readily absorbed by dust, made some astronomers think protogalaxies may be too faint to detect. [9]

In 1996, a protogalaxy candidate was discovered by Yee et al. using the Canadian Network for Observational Cosmology (CNOC). The object was a disk-like galaxy at high redshift with a very high luminosity. [10] It was later debated that the incredible luminosity was caused by the gravitational lensing of a foreground galactic cluster. [11]

In 2006, K. Nilsson et al. reported finding a "blob" emitting Lyman alpha UV radiation. Analysis concluded that this was a giant cloud of hydrogen gas falling onto a clump of dark matter in the early universe, creating a protogalaxy. [3] [4]

In 2007, Michael Rauch et al. [12] were using the VLT to search for a signal from intergalactic gas, when they spotted dozens of discrete objects emitting large amounts of the Lyman-alpha type UV radiation. They concluded that these 27 objects were examples of protogalaxies from 11 billion years ago. [5]

See also

Related Research Articles

Physical cosmology Branch of astronomy

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood. Physical cosmology, as it is now understood, began with the development in 1915 of Albert Einstein's general theory of relativity, followed by major observational discoveries in the 1920s: first, Edwin Hubble discovered that the universe contains a huge number of external galaxies beyond the Milky Way; then, work by Vesto Slipher and others showed that the universe is expanding. These advances made it possible to speculate about the origin of the universe, and allowed the establishment of the Big Bang theory, by Georges Lemaître, as the leading cosmological model. A few researchers still advocate a handful of alternative cosmologies; however, most cosmologists agree that the Big Bang theory best explains the observations.

Dark matter Hypothetical form of matter comprising most of the matter in the universe

Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Its presence is implied in a variety of astrophysical observations, including gravitational effects that cannot be explained by accepted theories of gravity unless more matter is present than can be seen. For this reason, most experts think that dark matter is abundant in the universe and that it has had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect.

Galaxy formation and evolution from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure.

Galaxy Gravitationally bound astronomical structure

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few hundred million stars to giants with one hundred trillion stars, each orbiting its galaxy's center of mass.

Galaxy groups and clusters Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

Molecular cloud Type of interstellar cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, H2), and the formation of H II regions. This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

Quasar Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN), powered by a supermassive black hole, with mass ranging from millions to tens of billions times the mass of the Sun, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

Galaxy rotation curve

The rotation curve of a disc galaxy is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot, and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from each side are averaged to create the curve. A significant discrepancy exists between the experimental curves observed, and a curve derived by applying gravity theory to the matter observed in a galaxy. Theories involving dark matter are the main postulated solutions to account for the variance.

Reionization Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the "dark ages".

Dark matter halo A theoretical component of a galaxy that envelops the galactic disc and extends well beyond the edge of the visible galaxy

According to modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include cold dark matter (CDM), warm dark matter, and massive compact halo objects (MACHOs).

Structure formation Formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures formed by gravitational instability of small early ripples in spacetime density.

Lyman-alpha blob

In astronomy, a Lyman-alpha blob (LAB) is a huge concentration of a gas emitting the Lyman-alpha emission line. LABs are some of the largest known individual objects in the Universe. Some of these gaseous structures are more than 400,000 light years across. So far they have only been found in the high-redshift universe because of the ultraviolet nature of the Lyman-alpha emission line. Since Earth's atmosphere is very effective at filtering out UV photons, the Lyman-alpha photons must be redshifted in order to be transmitted through the atmosphere.

Galaxy merger Merger whereby at least two galaxies collide

Galaxy mergers can occur when two galaxies collide. They are the most violent type of galaxy interaction. The gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. Galaxy mergers are important because the merger rate is a fundamental measurement of galaxy evolution. The merger rate also provides astronomers with clues about how galaxies bulked up over time.

Lyman-alpha emitter

A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen.

Future of an expanding universe Future scenario assuming that the expansion of the universe may continue forever, or reach a point at which it begins to contract.

Most observations suggest that the expansion of the universe will continue forever. If so, then a popular theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

Chronology of the universe History and future of the universe

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

A Zel'dovich pancake is a theoretical condensation of gas out of a primordial density fluctuation following the Big Bang. In 1970, Yakov B. Zel'dovich showed that for an ellipsoid of gas on a supergalactic scale, an approximation can be used that will model the collapse as occurring most rapidly along the shortest axis, resulting in a pancake form. This approximation assumes that the ellipsoid of gas is sufficiently large that the effect of pressure is negligible and only gravitational attraction needs to be considered. That is, the gas will collapse without being significantly perturbed by outward pressure. This assumption is especially valid if the collapse occurs before the recombination era that resulted in the formation of hydrogen atoms.

Himiko (Lyman-alpha blob)

Himiko is a large gas cloud found at redshift of z=6.6 that predates similar Lyman-alpha blobs. At the time of its discovery in 2009, researchers said it "may represent the most massive object ever discovered in the early universe". It is located in Cetus at redshift z=6.595, about 12.9 billion light years from Earth, or about 75×1021 miles (122×1021 kilometers).

Lyman-alpha blob 1 Lyman-alpha blob in the constellation of Aquarius

Lyman-alpha blob 1 (LAB-1) is a giant cosmic cloud of gas located at the southern constellation of Aquarius, approximately 11.5 billion light-years from Earth with a redshift (z) of 3.09. It was discovered unexpectedly in 2000 by Charles Steidel and colleagues, who were surveying for high-redshift galaxies using the 200 inch Hale telescope at the Palomar Observatory. The researchers had been investigating the abundance of galaxies in the young Universe when they came across two objects which would become known as Lyman-alpha blobs—huge concentrations of gases emitting the Lyman-alpha emission line of hydrogen.

References

  1. 1 2 3 4 5 6 Djorgovski, S.G. (2001). Encyclopedia of Astronomy and Astrophysics. 3 (1st ed.). Dirac House, Temple Back, Bristol: Institute of Physics Publishing, Nature Publishing Group. pp. 2159–2165. ISBN   978-0-333-75088-9.
  2. Seagrave, Wyken (2012). History of the Universe. Penny Press. Archived from the original on 28 July 2014. Retrieved 18 July 2014.
  3. 1 2 Nilsson, K.K.; et al. (June 2006). "A Lyman-α blob in the GOODS South field: evidence for cold accretion onto a dark matter halo". Astronomy and Astrophysics. 452 (3): L23–L26. arXiv: astro-ph/0512396 . Bibcode:2006A&A...452L..23N. doi:10.1051/0004-6361:200600025. S2CID   14837456.
  4. 1 2 "Rare Blob Unveiled: Evidence For Hydrogen Gas Falling Onto A Dark Matter Clump?". ScienceDaily.com. Retrieved 22 July 2014.
  5. 1 2 3 4 Johnston, Hamish (2007-11-28). "Proto-galaxies tip cold dark matter". Physicsworld.com. Retrieved 18 July 2014.
  6. Freeman, K; Larson, R.C; Tinsley, B (1976). Galaxies: Sixth Advanced Course of the Swiss Society of Astronomy and Astrophysics. Sauverny, Switzerland: Geneva Observatory. pp. 75–82.
  7. Whalen, Daniel; et al. (16 August 2013). "The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth". The Astrophysical Journal. 774 (1): 64. arXiv: 1305.6966 . Bibcode:2013ApJ...774...64W. doi:10.1088/0004-637X/774/1/64. S2CID   59289675.
  8. Gilmore, Gerard; Wyse, Rosemary F.G.; Kuijken, Konrad (1989). Evolutionary Phenomena in Galaxies (1st ed.). Cambridge, UK: Cambridge University Press. p. 194. ISBN   0-521-37193-7.
  9. Bothun, Gregory D. "Protogalaxies". Caltech.edu. Retrieved 18 July 2014.
  10. Yee, H.K.C.; et al. (May 1996). "A Proto-Galaxy Candidate at z=2.7 Discovered by its Young Stellar Population". Astronomical Journal. 111: 1783. arXiv: astro-ph/9602121 . Bibcode:1996AJ....111.1783Y. doi:10.1086/117916. S2CID   1421568.
  11. Williams, L.L.R.; Lewis, G.F. (August 1996). "The giant protogalaxy cB 58: an artefact of gravitational lensing?". Monthly Notices of the Royal Astronomical Society. 281 (3): L35–L39. arXiv: astro-ph/9605062 . Bibcode:1996MNRAS.281L..35W. doi:10.1093/mnras/281.3.l35. S2CID   14392384.
  12. Rauch, Michael (July 2008). "A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems". The Astrophysical Journal. 681 (2): 856–880. arXiv: 0711.1354 . Bibcode:2008ApJ...681..856R. doi:10.1086/525846. S2CID   16974679.