Free-fall time

Last updated • 4 min readFrom Wikipedia, The Free Encyclopedia

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant role.

Contents

Derivation

Infall to a point source of gravity

It is relatively simple to derive the free-fall time by applying Kepler's Third Law of planetary motion to a degenerate elliptic orbit. Consider a point mass at distance from a point source of mass which falls radially inward to it. (Crucially, Kepler's Third Law depends only on the semi-major axis of the orbit, and does not depend on the eccentricity). A purely radial trajectory is an example of a degenerate ellipse with an eccentricity of 1 and semi-major axis . Therefore, the time it would take a body to fall inward, turn around, and return to its original position is the same as the period of a circular orbit of radius , by Kepler's Third Law:

To see that the semi-major axis is , we must examine properties of orbits as they become increasingly elliptical. Kepler's First Law states that an orbit is an ellipse with the center of mass as one focus. In the case of a very small mass falling toward a very large mass , the center of mass is within the larger mass. The focus of an ellipse is increasingly off-center with increasing ellipticity. In the limiting case of a degenerate ellipse with an eccentricity of 1, the largest diameter of the orbit extends from the initial position of the infalling object to the point source of mass . In other words, the ellipse becomes a line of length . The semi-major axis is half the width of the ellipse along the long axis, which in the degenerate case becomes .

If the free-falling body completed a full orbit, it would begin at distance from the point source mass , fall inward until it reached that point source, then return to its original position. In real systems, the point source mass isn't truly a point source and the infalling body eventually collides with some surface. Thus, it only completes half the orbit. But the orbit is symmetrical so the free-fall time is half the period.

(This formula also follows from the formula for the falling time as a function of position.)

For example, the time for an object in the orbit of the Earth around the Sun with period year to fall into the Sun if it were suddenly stopped in orbit, would be

This is about 64.6 days.

Infall of a spherically-symmetric distribution of mass

Now, consider a case where the mass is not a point mass, but is distributed in a spherically-symmetric distribution about the center, with an average mass density of ,

where the volume of a sphere is:

Let us assume that the only force acting is gravity. Then, as first demonstrated by Newton, and can easily be demonstrated using the divergence theorem, the acceleration of gravity at any given distance from the center of the sphere depends only upon the total mass contained within . The consequence of this result is that if one imagined breaking the sphere up into a series of concentric shells, each shell would collapse only subsequent to the shells interior to it, and no shells cross during collapse. As a result, the free-fall time of a test particle at can be expressed solely in terms of the total mass interior to it. In terms of the average density interior to , the free-fall time is [1]

where the latter is in SI units.

This result is exactly the same as from the previous section when .

Applications

The free-fall time is a very useful estimate of the relevant timescale for a number of astrophysical processes. To get a sense of its application, we may write

Here we have estimated the numerical value for the free-fall time as roughly 35 minutes for a body of mean density 1 g/cm3.

Comparison

For an object falling from infinity in a capture orbit, the time it takes from a given position to fall to the central point mass is the same as the free-fall time, except for a constant .

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Spheroid</span> Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

<span class="mw-page-title-main">Orbital period</span> Time an astronomical object takes to complete one orbit around another object

The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cylindrical coordinate system</span> 3-dimensional coordinate system

A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

<span class="mw-page-title-main">Orbital speed</span> Speed at which a body orbits around the barycenter of a system

In gravitationally bound systems, the orbital speed of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

<span class="mw-page-title-main">Gaussian gravitational constant</span>

The Gaussian gravitational constant is a parameter used in the orbital mechanics of the Solar System. It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses.

The Plummer model or Plummer sphere is a density law that was first used by H. C. Plummer to fit observations of globular clusters. It is now often used as toy model in N-body simulations of stellar systems.

<span class="mw-page-title-main">Elliptic orbit</span> Kepler orbit with an eccentricity of less than one

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1. In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

<span class="mw-page-title-main">Circular orbit</span> Orbit with a fixed distance from the barycenter

A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

<span class="mw-page-title-main">Friedmann equations</span> Equations in physical cosmology

The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

<span class="mw-page-title-main">Gravity train</span>

A gravity train is a theoretical means of transportation for purposes of commuting between two points on the surface of a sphere, by following a straight tunnel connecting the two points through the interior of the sphere.

In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the equation describes acoustic waves in only one spatial dimension, while a more general form describes waves in three dimensions. Propagating waves in a pre-defined direction can also be calculated using first order one-way wave equation.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

<span class="mw-page-title-main">Semi-major and semi-minor axes</span> Term in geometry; longest and shortest semidiameters of an ellipse

In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

<span class="mw-page-title-main">Sitnikov problem</span>

The Sitnikov problem is a restricted version of the three-body problem named after Russian mathematician Kirill Alexandrovitch Sitnikov that attempts to describe the movement of three celestial bodies due to their mutual gravitational attraction. A special case of the Sitnikov problem was first discovered by the American scientist William Duncan MacMillan in 1911, but the problem as it currently stands wasn't discovered until 1961 by Sitnikov.

The Ellis drainhole is the earliest-known complete mathematical model of a traversable wormhole. It is a static, spherically symmetric solution of the Einstein vacuum field equations augmented by inclusion of a scalar field minimally coupled to the geometry of space-time with coupling polarity opposite to the orthodox polarity :

In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.

References

  1. Stellar Structure and Evolution Kippenhahn, Rudolf; Weigert, Alfred. Springer-Verlag, 1994, 3rd Ed. p.257 ISBN   3-540-58013-1