The gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state. A gravitationally bound system has a lower (i.e., more negative) gravitational potential energy than the sum of the energies of its parts when these are completely separated—this is what keeps the system aggregated in accordance with the minimum total potential energy principle.
The gravitational binding energy can be conceptually different within the theories of newtonian gravity and Albert Einstein's theory of gravity called General Relativity. In newtonian gravity, the binding energy can be considered to be the linear sum of the interactions between all pairs of microscopic components of the system, while in General Relativity, this is only approximately true if the gravitational fields are all weak. When stronger fields are present within a system, the binding energy is a nonlinear property of the entire system, and it cannot be conceptually attributed among the elements of the system. In this case the binding energy can be considered to be the (negative) difference between the ADM mass of the system, as it is manifest in its gravitational interaction with other distant systems, and the sum of the energies of all the atoms and other elementary particles of the system if disassembled.
For a spherical body of uniform density, the gravitational binding energy U is given in newtonian gravity by the formula [2] [3] where G is the gravitational constant, M is the mass of the sphere, and R is its radius.
Assuming that the Earth is a sphere of uniform density (which it is not, but is close enough to get an order-of-magnitude estimate) with M = 5.97×1024 kg and r = 6.37×106 m, then U = 2.24×1032 J. This is roughly equal to one week of the Sun's total energy output. It is 37.5 MJ/kg, 60% of the absolute value of the potential energy per kilogram at the surface.
The actual depth-dependence of density, inferred from seismic travel times (see Adams–Williamson equation), is given in the Preliminary Reference Earth Model (PREM). [4] Using this, the real gravitational binding energy of Earth can be calculated numerically as U = 2.49×1032 J.
According to the virial theorem, the gravitational binding energy of a star is about two times its internal thermal energy in order for hydrostatic equilibrium to be maintained. [2] As the gas in a star becomes more relativistic, the gravitational binding energy required for hydrostatic equilibrium approaches zero and the star becomes unstable (highly sensitive to perturbations), which may lead to a supernova in the case of a high-mass star due to strong radiation pressure or to a black hole in the case of a neutron star.
The gravitational binding energy of a sphere with radius is found by imagining that it is pulled apart by successively moving spherical shells to infinity, the outermost first, and finding the total energy needed for that.
Assuming a constant density , the masses of a shell and the sphere inside it are: and
The required energy for a shell is the negative of the gravitational potential energy:
Integrating over all shells yields:
Since is simply equal to the mass of the whole divided by its volume for objects with uniform density, therefore
And finally, plugging this into our result leads to
This section may need to be rewritten to comply with Wikipedia's quality standards, as there appears to be a serious conceptual inconsistency between the newtonian formula for binding energy and the relativistic concept of Schwarzschild radius. Perhaps the section would be best deleted..(August 2024) |
Two bodies, placed at the distance R from each other and reciprocally not moving, exert a gravitational force on a third body slightly smaller when R is small. This can be seen as a negative mass component of the system, equal, for uniformly spherical solutions, to:
For example, the fact that Earth is a gravitationally-bound sphere of its current size costs2.49421×1015 kg of mass (roughly one fourth the mass of Phobos – see above for the same value in Joules), and if its atoms were sparse over an arbitrarily large volume the Earth would weigh its current mass plus 2.49421×1015 kg kilograms (and its gravitational pull over a third body would be accordingly stronger).
It can be easily demonstrated that this negative component can never exceed the positive component of a system. A negative binding energy greater than the mass of the system itself would indeed require that the radius of the system be smaller than: which is smaller than its Schwarzschild radius: and therefore never visible to an external observer. However this is only a Newtonian approximation and in relativistic conditions other factors must be taken into account as well. [5]
Planets and stars have radial density gradients from their lower density surfaces to their much denser compressed cores. Degenerate matter objects (white dwarfs; neutron star pulsars) have radial density gradients plus relativistic corrections.
Neutron star relativistic equations of state include a graph of radius vs. mass for various models. [6] The most likely radii for a given neutron star mass are bracketed by models AP4 (smallest radius) and MS2 (largest radius). BE is the ratio of gravitational binding energy mass equivalent to observed neutron star gravitational mass of M with radius R,
Given current values
and the star mass M expressed relative to the solar mass,
then the relativistic fractional binding energy of a neutron star is
In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.
In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.
In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's self-gravitation. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit, material tends to coalesce. The Roche radius depends on the radius of the first body and on the ratio of the bodies' densities.
An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet. This mechanism is evident on Jupiter and Saturn and on brown dwarfs whose central temperatures are not high enough to undergo hydrogen fusion. It is estimated that Jupiter radiates more energy through this mechanism than it receives from the Sun, but Saturn might not. Jupiter has been estimated to shrink at a rate of approximately 1 mm/year by this process, corresponding to an internal flux of 7.485 W/m2.
The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.
A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.
The classical electron radius is a combination of fundamental physical quantities that define a length scale for problems involving an electron interacting with electromagnetic radiation. It links the classical electrostatic self-interaction energy of a homogeneous charge distribution to the electron's relativistic mass-energy. According to modern understanding, the electron is a point particle with a point charge and no spatial extent. Nevertheless, it is useful to define a length that characterizes electron interactions in atomic-scale problems. The classical electron radius is given as
Nuclear density is the density of the nucleus of an atom. For heavy nuclei, it is close to the nuclear saturation density nucleons/fm3, which minimizes the energy density of an infinite nuclear matter. The nuclear saturation mass density is thus kg/m3, where mu is the atomic mass constant. The descriptive term nuclear density is also applied to situations where similarly high densities occur, such as within neutron stars.
In physics, the Bekenstein bound is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximum amount of information required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite.
Scalar theories of gravitation are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation.
Some of the basic concepts of general relativity can be outlined outside the relativistic domain. In particular, the idea that mass–energy generates curvature in space and that curvature affects the motion of masses can be illustrated in a Newtonian setting. We use circular orbits as our prototype. This has the advantage that we know the kinetics of circular orbits. This allows us to calculate curvature of orbits in space directly and compare the results with dynamical forces.
A Maclaurin spheroid is an oblate spheroid which arises when a self-gravitating fluid body of uniform density rotates with a constant angular velocity. This spheroid is named after the Scottish mathematician Colin Maclaurin, who formulated it for the shape of Earth in 1742. In fact the figure of the Earth is far less oblate than Maclaurin's formula suggests, since the Earth is not homogeneous, but has a dense iron core. The Maclaurin spheroid is considered to be the simplest model of rotating ellipsoidal figures in hydrostatic equilibrium since it assumes uniform density.
The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. It is named after James Jeans.
In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled by general relativity. The equation is
The Navarro–Frenk–White (NFW) profile is a spatial mass distribution of dark matter fitted to dark matter halos identified in N-body simulations by Julio Navarro, Carlos Frenk and Simon White. The NFW profile is one of the most commonly used model profiles for dark matter halos.
Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.
In astrophysics, the virial mass is the mass of a gravitationally bound astrophysical system, assuming the virial theorem applies. In the context of galaxy formation and dark matter halos, the virial mass is defined as the mass enclosed within the virial radius of a gravitationally bound system, a radius within which the system obeys the virial theorem. The virial radius is determined using a "top-hat" model. A spherical "top hat" density perturbation destined to become a galaxy begins to expand, but the expansion is halted and reversed due to the mass collapsing under gravity until the sphere reaches equilibrium – it is said to be virialized. Within this radius, the sphere obeys the virial theorem which says that the average kinetic energy is equal to minus one half times the average potential energy, , and this radius defines the virial radius.