Ring galaxy

Last updated
Hoag's Object, a ring galaxy. Another red ring galaxy can be seen behind it. Hoag's object.jpg
Hoag's Object, a ring galaxy. Another red ring galaxy can be seen behind it.

A ring galaxy is a galaxy with a circle-like appearance. Hoag's Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. [1] The ring contains many massive, relatively young blue stars, which are extremely bright. The central region contains relatively little luminous matter. Some astronomers believe that ring galaxies are formed when a smaller galaxy passes through the center of a larger galaxy. Because most of a galaxy consists of empty space, this "collision" rarely results in any actual collisions between stars. However, the gravitational disruptions caused by such an event could cause a wave of star formation to move through the larger galaxy. Other astronomers think that rings are formed around some galaxies when external accretion takes place. Star formation would then take place in the accreted material because of the shocks and compressions of the accreted material. [2]

Contents

Formation theories

Ring galaxies are theorized to be formed through various methods including, but not limited to, the following scenarios:

Bar instability

A phenomenon where the rotational velocity of the bar in a barred spiral galaxy increases to the point of spiral spin-out. Under typical conditions, gravitational density waves would favor the creation of spiral arms. When bar instability occurs, these density waves are instead migrated out into a ring-structure by the pressure, force, and gravitational influence of the baryonic and dark matter furiously orbiting about the bar. This migration forces the stars, gas and dust found within the former arms into a torus-like region, forming a ring, and often igniting star formation.

Galaxies with this structure have been found where the bar dominates, and essentially ”carves out” the ring of the disc as it rotates. Oppositely, ring galaxies have been found where the bar has collapsed or disintegrated into a highly-flattened bulge.

Despite this, observations suggest that bars, rings and spiral arms have the ability to fall apart and reform over the span of hundreds of millions of years, particularly in dense intergalactic environments, such as galaxy groups and clusters, where gravitational influences are more likely to play a role in the morphological and physical evolution of a galaxy without the influence of collisions and mergers.

Galactic collisions

Another observed way that ring galaxies can form is through the process of two or more galaxies colliding. The Cartwheel Galaxy, galaxy pair AM 2026-424, and Arp 147 are all examples of ring galaxies thought to be formed by this process.

In pass-through galactic collisions, or bullseye collisions, an often smaller galaxy will pass directly through the disc of an often larger spiral, causing an outward push of the arms from the gravity of the smaller galaxy, as if dropping a rock into a pond of still water. These collisions can either launch the bulge and core away from the main disk, creating an almost empty ring appearance as the shockwave pushes the spiral arms out, or shove the core out towards the disk, often creating an oval-shaped ring with the bulge still somewhat intact. In side-swipe and head-on collisions, the appearance of a perfect ring are less likely, with chaotic and warped appearances dominating.

Rings formed through collision processes are believed to be transient features of the affected galaxies, lasting only a few ten to hundred million years (a relatively short timeframe considering some mergers can take 1+ billion years to complete) before disintegrating, reforming into spiral arms, or succumbing to further disturbance from gravitational influence.

Intergalactic medium accretion

This method has been inferred through the existence of Hoags object, along with UV observations of several other large and ultra-large super spiral galaxies and current formation theories of spiral galaxies.

UV-light observations show several cases of faint, ring-like and spiral structures of hot young stars that have formed along the network of cooled inflowing gas, extending far from the visible luminous galactic disc. If conditions are favorable, a ring can form in the place of a spiral structure.

Since some spiral galaxies are theorized to have formed from massive clouds of intergalactic gas collapsing and then rotationally forming into a disc structure, one could assume that a ring disc could form in place of a spiral disc if, as mentioned before, conditions are favorable. This holds true for protogalaxies, or galaxies just throughout to be forming, and old galaxies that have migrated into a section of space with a higher gas content than its previous locations.

See also

Related Research Articles

Galaxy formation and evolution from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure.

Galaxy Gravitationally bound astronomical structure

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few hundred million stars to giants with one hundred trillion stars, each orbiting its galaxy's center of mass.

Molecular cloud Type of interstellar cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit the formation of molecules, most commonly molecular hydrogen (H2). This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

Galactic astronomy

Galactic astronomy is the study of the Milky Way galaxy and all its contents. This is in contrast to extragalactic astronomy, which is the study of everything outside our galaxy, including all other galaxies.

Hoags Object Non-typical galaxy in the constellation Serpens

Hoag's Object is a non-typical galaxy of the type known as a ring galaxy. The galaxy is named after Arthur Hoag who discovered it in 1950 and identified it as either a planetary nebula or a peculiar galaxy with eight billion stars, spanning roughly 100,000 light years.

Astronomical object Large natural physical entity in space

An astronomical object or celestial object is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Spiral galaxy Galaxy having a number of arms of younger stars

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Lenticular galaxy Type of galaxy intermediate between an elliptical and a spiral galaxy

A lenticular galaxy is a type of galaxy intermediate between an elliptical and a spiral galaxy in galaxy morphological classification schemes. It contains a large-scale disc but does not have large-scale spiral arms. Lenticular galaxies are disc galaxies that have used up or lost most of their interstellar matter and therefore have very little ongoing star formation. They may, however, retain significant dust in their disks. As a result, they consist mainly of aging stars. Despite the morphological differences, lenticular and elliptical galaxies share common properties like spectral features and scaling relations. Both can be considered early-type galaxies that are passively evolving, at least in the local part of the Universe. Connecting the E galaxies with the S0 galaxies are the ES galaxies with intermediate-scale discs.

Galactic bulge Tightly packed group of stars within a larger formation

In astronomy, a galactic bulge is a tightly packed group of stars within a larger star formation. The term almost exclusively refers to the central group of stars found in most spiral galaxies. Bulges were historically thought to be elliptical galaxies that happened to have a disk of stars around them, but high-resolution images using the Hubble Space Telescope have revealed that many bulges lie at the heart of a spiral galaxy. It is now thought that there are at least two types of bulges: bulges that are like ellipticals and bulges that are like spiral galaxies.

A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo:

Orion Arm Minor spiral arm of the Milky Way galaxy; contains the Solar System

The Orion Arm is a minor spiral arm of the Milky Way Galaxy that is 3,500 light-years across and approximately 10,000 light-years in length, containing the Solar System, including Earth. It is also referred to by its full name, the Orion–Cygnus Arm, as well as Local Arm, Orion Bridge, and formerly, the Local Spur and Orion Spur.

Messier 94 Spiral galaxy in the constellation Canes Venatici

Messier 94 is a spiral galaxy in the mid-northern constellation Canes Venatici. It was discovered by Pierre Méchain in 1781, and catalogued by Charles Messier two days later. Although some references describe M94 as a barred spiral galaxy, the "bar" structure appears to be more oval-shaped. The galaxy has two ring structures.

Carina–Sagittarius Arm

The Carina–Sagittarius Arm is generally thought to be a minor spiral arm of the Milky Way galaxy. Each spiral arm is a long, diffuse curving streamer of stars that radiates from the galactic center. These gigantic structures are often composed of billions of stars and thousands of gas clouds. The Carina–Sagittarius Arm is one of the most pronounced arms in our galaxy as many HII regions, young stars and giant molecular clouds are concentrated in it.

Milky Way Barred spiral galaxy containing our Solar System

The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικός κύκλος, meaning "milky circle." From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies.

Cartwheel Galaxy Lenticular galaxy and ring galaxy in the constellation Sculptor

The Cartwheel Galaxy (also known as ESO 350-40 or PGC 2248) is a lenticular galaxy and ring galaxy about 500 million light-years away in the constellation Sculptor. It is an estimated 150,000 light-years diameter, and has a mass of about 2.9–4.8 × 109 solar masses; its outer ring has a circular velocity of 217 km/s.

Galactic clusters are gravitationally bound large-scale structures of multiple galaxies. The evolution of these aggregates is determined by time and manner of formation and the process of how their structures and constituents have been changing with time. Gamow (1952) and Weizscker (1951) showed that the observed rotations of galaxies are important for cosmology. They postulated that the rotation of galaxies might be a clue of physical conditions under which these systems formed. Thus, understanding the distribution of spatial orientations of the spin vectors of galaxies is critical to understanding the origin of the angular momenta of galaxies.

UGC 2885 Spiral galaxy in the constellation Perseus

UGC 2885 is a large barred spiral galaxy of type SA(rs)c in the constellation Perseus. It is 232 million light-years (71 Mpc) from Earth and measures 463,000 ly (142,000 pc) across, making it one of the largest known spiral galaxies. It is also a possible member of the Pisces-Perseus supercluster.

The following outline is provided as an overview of and topical guide to galaxies:

NGC 7013 Spiral or lenticular galaxy in the constellation Cygnus

NGC 7013 is a relatively nearby spiral or lenticular galaxy estimated to be around 37 to 41.4 million light-years away from Earth in the constellation of Cygnus. NGC 7013 was discovered by English astronomer William Herschel on July 17, 1784 and was also observed by his son, astronomer John Herschel on September 15, 1828.

References

  1. Nemiroff, R.; Bonnell, J., eds. (September 9, 2002). "Hoag's Object: A Strange Ring Galaxy". Astronomy Picture of the Day . NASA . Retrieved March 31, 2012.
  2. Appleton, P.N.; Struck-Marcell, Curtis (1996). "Collisional Ring Galaxies" . Retrieved March 31, 2012.
  3. "A Cosmic Hit and Run" . Retrieved 9 May 2016.
  4. "One ring to rule them all". ESA/Hubble. Retrieved 2 April 2013.