Radial velocity

Last updated
A plane flying past a radar station: the plane's velocity vector (red) is the sum of the radial velocity (green) and the tangential velocity (blue). Radialgeschwindigkeit.gif
A plane flying past a radar station: the plane's velocity vector (red) is the sum of the radial velocity (green) and the tangential velocity (blue).

The radial velocity or line-of-sight velocity of a target with respect to an observer is the rate of change of the vector displacement between the two points. It is formulated as the vector projection of the target-observer relative velocity onto the relative direction or line-of-sight (LOS) connecting the two points.

Contents

The radial speed or range rate is the temporal rate of the distance or range between the two points. It is a signed scalar quantity, formulated as the scalar projection of the relative velocity vector onto the LOS direction. Equivalently, radial speed equals the norm of the radial velocity, modulo the sign. [lower-alpha 1]

In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from the Earth (or approaches it, for a negative radial velocity).

Formulation

Given a differentiable vector defining the instantaneous relative position of a target with respect to an observer.

Let the instantaneous relative velocity of the target with respect to the observer be

The magnitude of the position vector is defined as in terms of the inner product

The quantity range rate is the time derivative of the magnitude (norm) of , expressed as

Substituting ( 2 ) into ( 3 )

Evaluating the derivative of the right-hand-side by the chain rule

using ( 1 ) the expression becomes

By reciprocity, [1] . Defining the unit relative position vector (or LOS direction), the range rate is simply expressed as

i.e., the projection of the relative velocity vector onto the LOS direction.

Further defining the velocity direction , with the relative speed , we have:

where the inner product is either +1 or -1, for parallel and antiparallel vectors, respectively.


A singularity exists for coincident observer target, i.e., ; in this case, range rate is undefined.

Applications in astronomy

In astronomy, radial velocity is often measured to the first order of approximation by Doppler spectroscopy. The quantity obtained by this method may be called the barycentric radial-velocity measure or spectroscopic radial velocity. [2] However, due to relativistic and cosmological effects over the great distances that light typically travels to reach the observer from an astronomical object, this measure cannot be accurately transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. [3] By contrast, astrometric radial velocity is determined by astrometric observations (for example, a secular change in the annual parallax). [3] [4] [5]

Spectroscopic radial velocity

Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding (redshift) and increases for objects that were approaching (blueshift).

The radial velocity of a star or other luminous distant objects can be measured accurately by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects is or was increasing; a negative radial velocity indicates the distance between the source and observer is or was decreasing.

William Huggins ventured in 1868 to estimate the radial velocity of Sirius with respect to the Sun, based on observed redshift of the star's light. [6]

Diagram showing how an exoplanet's orbit changes the position and velocity of a star as they orbit a common center of mass Planet reflex 200.gif
Diagram showing how an exoplanet's orbit changes the position and velocity of a star as they orbit a common center of mass

In many binary stars, the orbital motion usually causes radial velocity variations of several kilometres per second (km/s). As the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, and some orbital elements, such as eccentricity and semimajor axis. The same method has also been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass using the binary mass function. Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a very high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit. [7] [8]

Detection of exoplanets

The radial velocity method to detect exoplanets The radial velocity method (artist's impression).jpg
The radial velocity method to detect exoplanets

The radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By regularly looking at the spectrum of a star—and so, measuring its velocity—it can be determined if it moves periodically due to the influence of an exoplanet companion.

Data reduction

From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of

See also

Notes

  1. The norm, a nonnegative number, is multiplied by -1 if velocity (red arrow in the figure) and relative position form an obtuse angle or if relative velocity (green arrow) and relative position are antiparallel.

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

Angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force with that of the total potential energy of the system. Mathematically, the theorem states where T is the total kinetic energy of the N particles, Fk represents the force on the kth particle, which is located at position rk, and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from vis, the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Direction and rate of rotation

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Two-body problem</span> Motion problem in classical mechanics

In classical mechanics, the two-body problem is to predict the motion of two massive objects which are abstractly viewed as point particles. The problem assumes that the two objects interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored.

An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

<span class="mw-page-title-main">Orbital state vectors</span> Cartesian vectors of position and velocity of an orbiting body in space

In astrodynamics and celestial dynamics, the orbital state vectors of an orbit are Cartesian vectors of position and velocity that together with their time (epoch) uniquely determine the trajectory of the orbiting body in space.

<span class="mw-page-title-main">Elliptic orbit</span> Kepler orbit with an eccentricity of less than one

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1. In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In celestial mechanics, the specific relative angular momentum of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question.

<span class="mw-page-title-main">Relative velocity</span> Velocity of an object or observer in the rest frame of another object or observer

The relative velocity, denoted , is the velocity vector of an object or observer B in the rest frame of another object or observer A. The relative speed is the vector norm of the relative velocity.

<span class="mw-page-title-main">Doppler spectroscopy</span> Indirect method for finding extrasolar planets and brown dwarfs

Doppler spectroscopy is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. As of November 2022, about 19.5% of known extrasolar planets have been discovered using Doppler spectroscopy.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

<span class="mw-page-title-main">Velocity</span> Speed and direction of a motion

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

References

  1. Hoffman, Kenneth M.; Kunzel, Ray (1971). Linear Algebra (Second ed.). Prentice-Hall Inc. p.  271. ISBN   0135367972.
  2. Resolution C1 on the Definition of a Spectroscopic "Barycentric Radial-Velocity Measure". Special Issue: Preliminary Program of the XXVth GA in Sydney, July 13–26, 2003 Information Bulletin n° 91. Page 50. IAU Secretariat. July 2002. https://www.iau.org/static/publications/IB91.pdf
  3. 1 2 Lindegren, Lennart; Dravins, Dainis (April 2003). "The fundamental definition of "radial velocity"" (PDF). Astronomy and Astrophysics. 401 (3): 1185–1201. arXiv: astro-ph/0302522 . Bibcode:2003A&A...401.1185L. doi:10.1051/0004-6361:20030181. S2CID   16012160 . Retrieved 4 February 2017.
  4. Dravins, Dainis; Lindegren, Lennart; Madsen, Søren (1999). "Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity". Astron. Astrophys. 348: 1040–1051. arXiv: astro-ph/9907145 . Bibcode:1999A&A...348.1040D.
  5. Resolution C 2 on the Definition of "Astrometric Radial Velocity". Special Issue: Preliminary Program of the XXVth GA in Sydney, July 13–26, 2003 Information Bulletin n° 91. Page 51. IAU Secretariat. July 2002. https://www.iau.org/static/publications/IB91.pdf
  6. Huggins, W. (1868). "Further observations on the spectra of some of the stars and nebulae, with an attempt to determine therefrom whether these bodies are moving towards or from the Earth, also observations on the spectra of the Sun and of Comet II". Philosophical Transactions of the Royal Society of London . 158: 529–564. Bibcode:1868RSPT..158..529H. doi:10.1098/rstl.1868.0022.
  7. Anglada-Escude, Guillem; Lopez-Morales, Mercedes; Chambers, John E. (2010). "How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits". The Astrophysical Journal Letters. 709 (1): 168–78. arXiv: 0809.1275 . Bibcode:2010ApJ...709..168A. doi:10.1088/0004-637X/709/1/168. S2CID   2756148.
  8. Kürster, Martin; Trifonov, Trifon; Reffert, Sabine; Kostogryz, Nadiia M.; Roder, Florian (2015). "Disentangling 2:1 resonant radial velocity oribts from eccentric ones and a case study for HD 27894". Astron. Astrophys. 577: A103. arXiv: 1503.07769 . Bibcode:2015A&A...577A.103K. doi:10.1051/0004-6361/201525872. S2CID   73533931.
  9. Ferraz-Mello, S.; Michtchenko, T. A. (2005). "Extrasolar Planetary Systems". Chaos and Stability in Planetary Systems. Lecture Notes in Physics. Vol. 683. pp. 219–271. Bibcode:2005LNP...683..219F. doi:10.1007/10978337_4. ISBN   978-3-540-28208-2.{{cite book}}: |journal= ignored (help)
  10. Reid, M. J.; Dame, T. M. (2016). "On the rotation speed of the Milky Way determined from HI emission". The Astrophysical Journal. 832 (2): 159. arXiv: 1608.03886 . Bibcode:2016ApJ...832..159R. doi: 10.3847/0004-637X/832/2/159 . S2CID   119219962.
  11. Stumpff, P. (1985). "Rigorous treatment of the heliocentric motion of stars". Astron. Astrophys. 144 (1): 232. Bibcode:1985A&A...144..232S.

Further reading