Habitable zone for complex life

Last updated
Natural shielding against space weather and solar wind, such as the magnetosphere depicted in this artistic rendition, is required for planets to sustain life for prolonged periods. Magnetosphere rendition.jpg
Natural shielding against space weather and solar wind, such as the magnetosphere depicted in this artistic rendition, is required for planets to sustain life for prolonged periods.

A Habitable Zone for Complex Life (HZCL) is a range of distances from a star suitable for complex aerobic life. Different types of limitations preventing complex life give rise to different zones. [1] Conventional habitable zones are based on compatibility with water. [2] Most zones start at a distance from the host star and then end at a distance farther from the star. A planet would need to orbit inside the boundaries of this zone. With multiple zonal constraints, the zones would need to overlap for the planet to support complex life. The requirements for bacterial life produce much larger zones than those for complex life, which requires a very narrow zone. [3] [4] [5]

Contents

Exoplanets

The first confirmed exoplanets was discovered in 1992, several planets orbiting the pulsar PSR B1257+12. [6] Since then the list of exoplanets has grown to the thousands. [7] Most exoplanets are hot Jupiter planets, that orbit very close the star. [8] Many exoplanets are super-Earths, that could be a gas dwarf or large rocky planet, like Kepler-442b at a mass 2.36 times Earths. [9]

Star

Unstable stars are young and old stars, or very large or small stars. Unstable stars have changing solar luminosity that changes the size of the life habitable zones. Unstable stars also produce extreme solar flares and coronal mass ejections. Solar flares and coronal mass ejections can strip away a planet's atmosphere that is not replaceable. Thus life habitable zones require and very stable star like the Sun, at ±0.1% solar luminosity change. [10] [11] Finding a stable star, like the Sun, is the search for a solar twin, with solar analogs that have been found. [12] Star metallicity, mass, age, color, and temperature all effect luminosity variations. [13] [14] [15] The Sun, a G2V star, has a mid-range metallicity optimal for the formation of rocky planets. [16] Dwarf stars (red dwarf/orange dwarf/brown dwarf/subdwarf) are not only unstable, but also emit low energy, so the habitable zone is very close to the star and planets become tidally locked on the timescales needed for the development of life. [17] Giant stars (subgiant/giant star/red giant/red supergiant) are unstable and emit high energy, so the habitable zone is very far from the star. [18] Multiple-star systems are also very common and are not suitable for complex life, as the planet orbit would be unstable due to multiple gravitational forces and solar radiation. Liquid water is possible in Multiple-star systems. [19] [20] [21] [22]

Named habitable zones

A conventional habitable zone is defined by liquid water.

Named habitable zones for complex life

Over time and with more research, astronomers, cosmologists and astrobiologist have discovered more parameters needed for life. Each parameter could have a corresponding zone. Some of the named zones include: [29] [30]

Some factors that depend on planetary distance and may limit complex aerobic life have not been given zone names. These include:

Life

Life on Earth is carbon-based. However, some theories suggest that life could be based on other elements in the periodic table. [101] Other elements proposed have been silicon, boron, arsenic, ammonia, methane and others. As more research has been done on life on Earth, it has been found that only carbon's organic molecules have the complexity and stability to form life. [102] [103] [104] Carbon properties allows for complex chemical bonding that produces covalent bonds needed for organic chemistry. Carbon molecules are lightweight and relatively small in size. Carbon's ability to bond to oxygen, hydrogen, nitrogen, phosphorus, and sulfur (called CHNOPS) is key to life. [105] [106] [107]

See also

References

  1. "Not All Habitable Zones Are Created Equal". www.spacedaily.com.
  2. 1 2 Schwieterman, Edward W.; Reinhard, Christopher T.; Olson, Stephanie L.; Harman, Chester E.; Lyons, Timothy W. (June 10, 2019). "A Limited Habitable Zone for Complex Life". The Astrophysical Journal. 878 (1): 19. arXiv: 1902.04720 . Bibcode:2019ApJ...878...19S. doi: 10.3847/1538-4357/ab1d52 .
  3. "New Discovery Shows 'Habitable Zone for Complex Life' is Much More Narrow than Original Estimates – NASA". June 10, 2019.
  4. Williams, Matt; Today, Universe. "Complex life might require a very narrow habitable zone". phys.org.
  5. How do you form a habitable planet?, Georgia State University Research
  6. Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0. S2CID   4260368.
  7. "Exoplanet and Candidate Statistics". exoplanetarchive.ipac.caltech.edu.
  8. "Orbital Evolution of planets in Extra-solar systems". users.auth.gr. 5 February 2024.
  9. Valencia, V.; Sasselov, D. D.; O'Connell, R. J. (2007). "Radius and structure models of the first super-earth planet". The Astrophysical Journal . 656 (1): 545–551. arXiv: astro-ph/0610122 . Bibcode:2007ApJ...656..545V. doi:10.1086/509800. S2CID   17656317.
  10. 1 2 3 Green, James; Boardsen, Scott; Dong, Chuanfei (February 20, 2021). "Magnetospheres of Terrestrial Exoplanets and Exomoons: Implications for Habitability and Detection". The Astrophysical Journal Letters. 907 (2): L45. arXiv: 2012.11694 . Bibcode:2021ApJ...907L..45G. doi: 10.3847/2041-8213/abd93a .
  11. 1 2 Brasch, Klaus R. (July 7, 2023). "Is Earth the only Goldilocks planet? | Astronomy.com".
  12. "Solar Variability and Terrestrial Climate – NASA Science". science.nasa.gov.
  13. "Stellar Luminosity Calculator". astro.unl.edu.
  14. The Effects of Solar Variability on Earth's Climate: A Workshop Report. National Academies Press. November 12, 2012. doi:10.17226/13519. ISBN   978-0-309-26564-5.
  15. "Most of Earth's twins aren't identical, or even close! | ScienceBlogs". scienceblogs.com.
  16. 1 2 "NASA Astrobiology". astrobiology.nasa.gov.
  17. Barnes, Rory, ed. (2010). Formation and Evolution of Exoplanets. John Wiley & Sons. p. 248. ISBN   978-3527408962. Archived from the original on 2023-08-06. Retrieved 2016-08-16.
  18. Voisey, Jon (February 23, 2011). "Plausibility Check - Habitable Planets around Red Giants".
  19. "Multiple Star Systems - NASA Science". science.nasa.gov.
  20. Busetti, F.; Beust, H.; Harley, C. (November 2018). "Stability of planets in triple star systems". Astronomy & Astrophysics. 619: A91. arXiv: 1811.08221 . Bibcode:2018A&A...619A..91B. doi:10.1051/0004-6361/201833097.
  21. Martin, David V. (2018). "Populations of Planets in Multiple Star Systems". Handbook of Exoplanets. pp. 1–26. doi:10.1007/978-3-319-30648-3_156-1. ISBN   978-3-319-30648-3.
  22. Cuntz, M.; Eberle, J.; Musielak, Z. E. (10 November 2007). "Stringent Criteria for Stable and Unstable Planetary Orbits in Stellar Binary Systems". The Astrophysical Journal. 669 (2): L105 –L108. Bibcode:2007ApJ...669L.105C. doi:10.1086/523873.
  23. "Big Idea 2.1 – NASA Science". science.nasa.gov.
  24. "What Is the Habitable Zone?". Exoplanet Exploration: Planets Beyond our Solar System.
  25. "Planets in the habitable zone". www.esa.int.
  26. 1 2 3 "Which habitable zone planets are the best candidates for detecting life? | astrobites". 21 March 2022.
  27. "Second Earth-sized World Found in System's Habitable Zone". Exoplanet Exploration: Planets Beyond our Solar System. 10 January 2023.
  28. "The Habitable Zone | Astronomy 801: Planets, Stars, Galaxies, and the Universe". www.e-education.psu.edu.
  29. Taylor, Stuart Ross (29 July 2004). "Why can't planets be like stars?". Nature. 430 (6999): 509. Bibcode:2004Natur.430..509T. doi: 10.1038/430509a . PMID   15282586. S2CID   12316875.
  30. Stern, Alan. "Ten Things I Wish We Really Knew In Planetary Science" . Retrieved 2009-05-22.
  31. Cowing, Keith (March 30, 2023). "The Ultraviolet Habitable Zone Of Exoplanets". Astrobiology.
  32. Spinelli, Riccardo; Borsa, Francesco; Ghirlanda, Giancarlo; Ghisellini, Gabriele; Haardt, Francesco (April 13, 2023). "The ultraviolet habitable zone of exoplanets". Monthly Notices of the Royal Astronomical Society. 522 (1): 1411–1418. arXiv: 2303.16229 . doi: 10.1093/mnras/stad928 .
  33. "Habitable zones :: Vera Dobos". veradobos.webnode.page.
  34. Hall, C.; Stancil, P. C.; Terry, J. P.; Ellison, C. K. (May 1, 2023). "A New Definition of Exoplanet Habitability: Introducing the Photosynthetic Habitable Zone". The Astrophysical Journal Letters. 948 (2): L26. arXiv: 2301.13836 . Bibcode:2023ApJ...948L..26H. doi: 10.3847/2041-8213/acccfb .
  35. Association, American Lung. "Ozone". www.lung.org.
  36. Proedrou, Elisavet; Hocke, Klemens (June 1, 2016). "Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet". Earth, Planets and Space. 68 (1): 96. Bibcode:2016EP&S...68...96P. doi: 10.1186/s40623-016-0461-x .
  37. Jacob-Lopes, Eduardo; Zepka, Leila Queiroz; Deprá, Mariany Costa (2021). "Methods of evaluation of the environmental impact on the life cycle". Sustainability Metrics and Indicators of Environmental Impact. pp. 29–70. doi:10.1016/B978-0-12-823411-2.00003-7. ISBN   978-0-12-823411-2.
  38. Yang, Jun; Boué, Gwenaël; Fabrycky, Daniel C.; Abbot, Dorian S. (25 April 2014). "Strong Dependence of the Inner Edge of the Habitable Zone on Planetary Rotation Rate". The Astrophysical Journal. 787 (1): L2. arXiv: 1404.4992 . Bibcode:2014ApJ...787L...2Y. doi:10.1088/2041-8205/787/1/L2.
  39. "Rotation of planets influences habitability". phys.org.
  40. Jansen, T (March 2021). Effects of Rotation Rate on the Habitability of Earth-like Planets using NASA's ROCKE-3D GCM. AASTCS8, Habitable Worlds 2021. Bibcode:2021BAAS...53c0603J.
  41. The Moon's Role in the Habitability of the Earth, Georgia State University Research
  42. Seasons, Georgia State University Research
  43. Ecliptic Plane, Georgia State University Research
  44. Axis Tilt is Critical for Life, Georgia State, astr.gsu.edu
  45. Starr, Michelle (July 8, 2021). "This One Planetary Feature May Be Crucial For The Rise of Complex Life in The Universe". ScienceAlert.
  46. Conference, Goldschmidt. "Goldilocks planets 'with a tilt' may develop more complex life". phys.org.
  47. Jenkins, Gregory S. (27 March 2000). "Global climate model high-obliquity solutions to the ancient climate puzzles of the Faint-Young Sun Paradox and low-altitude Proterozoic glaciation". Journal of Geophysical Research: Atmospheres. 105 (D6): 7357–7370. Bibcode:2000JGR...105.7357J. doi:10.1029/1999JD901125.
  48. Becker, Juliette; Seligman, Darryl Z.; Adams, Fred C.; Styczinski, Marshall J. (March 1, 2023). "The Influence of Tidal Heating on the Habitability of Planets Orbiting White Dwarfs". The Astrophysical Journal Letters. 945 (2): L24. arXiv: 2303.02217 . Bibcode:2023ApJ...945L..24B. doi: 10.3847/2041-8213/acbe44 .
  49. Hasler, Caroline (February 17, 2022). "Tidally Locked and Loaded with Questions". Eos.
  50. "New conditions for life on other planets: Tidal effects change 'habitable zone' concept". ScienceDaily.
  51. Airapetian, Vladimir S. (May 2017). Space Weather Affected Habitable Zones Around Active Stars. AASTCS5 Radio Exploration of Planetary Habitability. Bibcode:2017reph.conf10105A.
  52. Smith, David S.; Scalo, John M. (September 2009). "Habitable Zones Exposed: Astrosphere Collapse Frequency as a Function of Stellar Mass". Astrobiology. 9 (7): 673–681. Bibcode:2009AsBio...9..673S. doi:10.1089/ast.2009.0337. PMID   19778278.
  53. Lillis, Robert J.; Robbins, Stuart; Manga, Michael; Halekas, Jasper S.; Frey, Herbert V. (July 2013). "Time history of the Martian dynamo from crater magnetic field analysis". Journal of Geophysical Research: Planets. 118 (7): 1488–1511. Bibcode:2013JGRE..118.1488L. doi:10.1002/jgre.20105.
  54. Schubert, G.; Russell, C. T.; Moore, W. B. (December 2000). "Timing of the Martian dynamo". Nature. 408 (6813): 666–667. doi:10.1038/35047163. PMID   11130059.
  55. Langlais, Benoit; Thébault, Erwan; Houliez, Aymeric; Purucker, Michael E.; Lillis, Robert J. (2019). "A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN". Journal of Geophysical Research: Planets. 124 (6): 1542–1569. Bibcode:2019JGRE..124.1542L. doi:10.1029/2018JE005854. ISSN   2169-9100. PMC   8793354 . PMID   35096494.
  56. "Space Radiation is Risky Business for the Human Body – NASA". September 19, 2017.
  57. Collinson, Glyn A.; Frahm, Rudy A.; Glocer, Alex; Coates, Andrew J.; Grebowsky, Joseph M.; Barabash, Stas; Domagal-Goldman, Shawn D.; Fedorov, Andrei; Futaana, Yoshifumi; Gilbert, Lin K.; Khazanov, George; Nordheim, Tom A.; Mitchell, David; Moore, Thomas E.; Peterson, William K.; Winningham, John D.; Zhang, Tielong L. (28 June 2016). "The electric wind of Venus: A global and persistent 'polar wind'-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions" (PDF). Geophysical Research Letters. 43 (12): 5926–5934. Bibcode:2016GeoRL..43.5926C. doi:10.1002/2016GL068327.
  58. Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce (16 November 2015). "Electric Mars: The first direct measurement of an upper limit for the Martian 'polar wind' electric potential". Geophysical Research Letters. 42 (21): 9128–9134. Bibcode:2015GeoRL..42.9128C. doi:10.1002/2015GL065084.
  59. "Strong 'electric wind' strips planets of oceans and atmospheres". UCL News. June 20, 2016.
  60. "Eccentric Habitable Zones". Exoplanet Exploration: Planets Beyond our Solar System.
  61. Zubritsky, Elizabeth. "Jupiter's Youthful Travels Redefined Solar System". NASA. Archived from the original on 1 March 2017. Retrieved 4 November 2015.
  62. Beatty, Kelly (16 October 2010). "Our "New, Improved" Solar System". Sky & Telescope . Retrieved 4 November 2015.
  63. Sanders, Ray (23 August 2011). "How Did Jupiter Shape Our Solar System?". Universe Today . Retrieved 4 November 2015.
  64. See, V.; Jardine, M.; Vidotto, A. A.; Petit, P.; Marsden, S. C.; Jeffers, S. V.; do Nascimento, J. D. (October 2014). "The effects of stellar winds on the magnetospheres and potential habitability of exoplanets". Astronomy & Astrophysics. 570: A99. arXiv: 1409.1237 . Bibcode:2014A&A...570A..99S. doi:10.1051/0004-6361/201424323.
  65. "Planetary Habitability page of the Trieste Astrobiology Group". wwwuser.oats.inaf.it.
  66. Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio (25 March 2013). "The Habitable Zone of Earth-Like Planets with Different Levels of Atmospheric Pressure". The Astrophysical Journal. 767 (1): 65. arXiv: 1302.4566 . Bibcode:2013ApJ...767...65V. doi:10.1088/0004-637x/767/1/65.
  67. "Mars & Comets – NASA". mars.nasa.gov.
  68. Nair, C. P. Reghunadhan; Unnikrishnan, Vibhu (April 18, 2020). "Stability of the Liquid Water Phase on Mars: A Thermodynamic Analysis Considering Martian Atmospheric Conditions and Perchlorate Brine Solutions". ACS Omega. 5 (16): 9391–9397. doi:10.1021/acsomega.0c00444. PMC   7191838 . PMID   32363291.
  69. "How Does Barometric Pressure Affect Humans?". MedicineNet.
  70. Tarver, William J.; Volner, Keith; Cooper, Jeffrey S. (2024). "Aerospace Pressure Effects". StatPearls. StatPearls Publishing. PMID   29262037.
  71. Cho, Adrian (24 November 2014). "Complex life may be possible in only 10% of all galaxies". Science News.
  72. "Which Galaxies are Best Suited for the Evolution of Alien Life?". Discover Magazine.
  73. "What's killing galaxies? Large survey reveals how star formation is shut down in extreme regions of the Universe".
  74. Canada, National Research Council (November 2, 2021). "What's killing galaxies? Large survey reveals how star formation is shut down in extreme regions of the Universe". nrc.canada.ca.
  75. "New study examines which galaxies are best for intelligent life". ScienceDaily.
  76. 1 2 Vera, Matias; Alonso, Sol; Coldwell, Georgina (November 2016). "Effect of bars on the galaxy properties". Astronomy & Astrophysics. 595: A63. arXiv: 1607.08643 . Bibcode:2016A&A...595A..63V. doi:10.1051/0004-6361/201628750.
  77. Nairn, A.; Lahav, O. (21 April 1997). "What is a peculiar galaxy?". Monthly Notices of the Royal Astronomical Society. 286 (4): 969–978. arXiv: astro-ph/9607113 . doi: 10.1093/mnras/286.4.969 .
  78. "Star Formation in Irregular Galaxies". ned.ipac.caltech.edu.
  79. "Irregular Galaxy: A Unique Collections of Stars – Let's Talk Stars". www.letstalkstars.com. February 17, 2023.
  80. Martel, Hugo; Kawata, Daisuke; Ellison, Sara L. (21 May 2013). "The connection between star formation and metallicity evolution in barred spiral galaxies". Monthly Notices of the Royal Astronomical Society. 431 (3): 2560–2575. arXiv: 1302.6211 . doi: 10.1093/mnras/stt354 .
  81. Yu, Si-Yue; Ho, Luis C. (January 31, 2019). "On the Connection between Spiral Arm Pitch Angle and Galaxy Properties". The Astrophysical Journal. 871 (2): 194. arXiv: 1812.06010 . Bibcode:2019ApJ...871..194Y. doi: 10.3847/1538-4357/aaf895 .
  82. "What process creates and maintains the beautiful spiral arms around spiral galaxies? I've been told that density waves are responsible—so where do the density waves come from?". Scientific American.
  83. Hall, Shannon. "The Milky Way's Spiral Arms May Have Carved Earth's Continents". Scientific American.
  84. "The origin of elements, by Miller, astro.umd.edu" (PDF).
  85. Mahoney, Trevor (July 13, 2020). "Why Different Types of Galaxies May Affect the Development of Life".
  86. Mason, Paul (January 2018). The Supergalactic Habitable Zone. AAS Meeting #231, id. 401.04. American Astronomical Society. Bibcode:2018AAS...23140104M.
  87. Mason, P. A.; Biermann, P. L. (November 2017). The Large-Scale Structure of Habitability in the Universe. Habitable Worlds 2017: A System Science Workshop. Bibcode:2017LPICo2042.4149M.
  88. Mason, Paul (January 2019). The dawn of habitable conditions for complex life in the Universe. AAS Meeting #233, id.432.06. American Astronomical Society. Bibcode:2019AAS...23343206M.
  89. "The Cosmic Blueprint | Paul Davies". cosmos.asu.edu.
  90. "New study dramatically narrows the search for advanced life in the universe | UCR News | UC Riverside". news.ucr.edu.
  91. Gribbin, John (2011). Alone in the Universe: Why our planet is unique. Wiley.[ page needed ]
  92. Ward, Peter D.; Brownlee, Donald (2000). Rare Earth. doi:10.1007/b97646. ISBN   978-0-387-95289-5.[ page needed ]
  93. Gonzales, Guillermo; Richards, Jay W (2004). The Privileged Planet. Regnery Publishing, Inc.
  94. "Lucky Planet - Why Earth is Exceptional & Life In The Universe".
  95. "The origin and rise of complex life | Royal Society". royalsociety.org. 7 December 2022.
  96. "Ice, Snow, and Glaciers and the Water Cycle | U.S. Geological Survey". www.usgs.gov.
  97. Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn (January 16, 2018). "Exo-Milankovitch Cycles. I. Orbits and Rotation States". The Astronomical Journal. 155 (2): 60. arXiv: 1712.10060 . Bibcode:2018AJ....155...60D. doi: 10.3847/1538-3881/aaa301 .
  98. Deitrick, Russell; Barnes, Rory; Bitz, Cecilia; Fleming, David; Charnay, Benjamin; Meadows, Victoria; Wilhelm, Caitlyn; Armstrong, John; Quinn, Thomas R. (June 1, 2018). "Exo-Milankovitch Cycles. II. Climates of G-dwarf Planets in Dynamically Hot Systems". The Astronomical Journal. 155 (6): 266. arXiv: 1805.00283 . Bibcode:2018AJ....155..266D. doi: 10.3847/1538-3881/aac214 .
  99. Tereza Pultarova (June 14, 2022). "Milankovitch cycles: What are they and how do they affect Earth?". Space.com.
  100. Laboratory, By Alan Buis, NASA's Jet Propulsion. "Milankovitch (Orbital) Cycles and Their Role in Earth's Climate". Climate Change: Vital Signs of the Planet.{{cite web}}: CS1 maint: multiple names: authors list (link)
  101. "Knowledge reference for national forest assessments – modeling for estimation and monitoring". www.fao.org. Archived from the original on January 13, 2020. Retrieved Feb 20, 2019.
  102. Allison, Steven D.; Vitousek, Peter M. (May 2005). "Responses of extracellular enzymes to simple and complex nutrient inputs". Soil Biology and Biochemistry. 37 (5): 937–944. Bibcode:2005SBiBi..37..937A. doi:10.1016/j.soilbio.2004.09.014.
  103. "Astrobiology". Biology Cabinet. September 26, 2006. Archived from the original on 2010-12-12. Retrieved 2011-01-17.
  104. "Polycyclic Aromatic Hydrocarbons: An Interview With Dr. Farid Salama". Astrobiology magazine. 2000. Archived from the original on 2008-06-20. Retrieved 2008-10-20.
  105. Lipkus, Alan H.; Yuan, Qiong; Lucas, Karen A.; et al. (2008). "Structural Diversity of Organic Chemistry. A Scaffold Analysis of the CAS Registry". The Journal of Organic Chemistry. 73 (12). American Chemical Society (ACS): 4443–4451. doi: 10.1021/jo8001276 . PMID   18505297.
  106. Molnar, Charles; Gair, Jane (May 14, 2015). "2.3 Biological Molecules". Introduction to the Chemistry of Life via opentextbc.ca.
  107. Education (2010). "CHNOPS: The Six Most Abundant Elements of Life". Pearson Education . Pearson BioCoach. Archived from the original on 27 July 2017. Retrieved 2010-12-10. Most biological molecules are made from covalent combinations of six important elements, whose chemical symbols are CHNOPS. ... Although more than 25 types of elements can be found in biomolecules, six elements are most common. These are called the CHNOPS elements; the letters stand for the chemical abbreviations of carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur.