New Worlds Mission

Last updated
Starshade with space observatory during deployment Starshade Artist's Concept 2 PIA20911.jpg
Starshade with space observatory during deployment
Video demonstration of the starshade
Starshade occulter test, 2014 Starshade Deployed at JPL 2014 PIA20909.jpg
Starshade occulter test, 2014

The New Worlds Mission is a proposed project comprising a large occulter flying in formation with a space telescope designed to block the light of nearby stars in order to observe their orbiting exoplanets. The observations could be taken with an existing space telescope or a dedicated visible light optical telescope optimally designed for the task of finding exoplanets. A preliminary research project was funded from 2005 [1] through 2008 by NASA Institute for Advanced Concepts (NIAC) and headed by Webster Cash of the University of Colorado at Boulder in conjunction with Ball Aerospace & Technologies Corp., Northrop Grumman, Southwest Research Institute and others. Since 2010 the project has been looking for additional financing from NASA and other sources in the amount of roughly US$3 billion including its own four-meter telescope. [2] [3] If financed and launched, it would operate for five years.

Contents

Purpose

Currently, the direct detection of extrasolar planets (or exoplanets) is extremely difficult. This is primarily due to:

The difficulty of observing such a dim planet so close to a bright star is the obstacle that has prevented astronomers from directly photographing exoplanets. To date, only a handful of exoplanets have been photographed. [4] The first exoplanet to be photographed, 2M1207b, is in orbit around a star called 2M1207. Astronomers were only able to photograph this planet because it is a very unusual planet that is very far from its host star, approximately 55 astronomical units (about twice the distance of Neptune). Furthermore, the planet is orbiting a very dim star, known as a brown dwarf.

To overcome the difficulty of distinguishing more Earth-like planets in the vicinity of a bright star, the New Worlds Mission would block the star's light with an occulter. The occulter would block all of the starlight from reaching the observer, while allowing the planet's light to pass undisturbed. The starshade would be tens of meters across and probably made out of Kapton, a lightweight material similar to Mylar. [5]

Methods

Traditional methods of exoplanet detection rely on indirect means of inferring the existence of orbiting bodies. These methods include:

All of these methods provide convincing evidence for the existence of extrasolar planets, but none of them provide actual images of the planets.

The yellow circle represents the star, whose light is blocked by the occulter. The blue circle represents the planet, whose light passes to the observer undisturbed. Occulter diagram.png
The yellow circle represents the star, whose light is blocked by the occulter. The blue circle represents the planet, whose light passes to the observer undisturbed.

The goal of the New Worlds Mission is to block the light coming from nearby stars with an occulter. This would allow the direct observation of orbiting planets. The occulter would be a large sheet disc flown thousands of kilometers along the line of sight. The disc would likely be several tens of meters in diameter and would fit inside existing expendable launch vehicles and be deployed after launch.

One difficulty with this concept is that light incoming from the target star would diffract around the disc and constructively interfere along the central axis. Thus the starlight would still be easily visible, making planet detection impossible. This concept was first famously theorized by Siméon Poisson in order to disprove the wave theory of light, as he thought the existence of a bright spot at the center of the shadow to be nonsensical. However Dominique Arago experimentally verified the existence of the spot of Arago. This effect can be negated by specifically shaping the occulter. By adding specially shaped petals to the outer edge of the disc, the spot of Arago will disappear, allowing the suppression of the star's light.

This technique would make planetary detection possible for stars within approximately 10 parsecs (about 32 light years) of Earth. It is estimated that there could be several thousand exoplanets within that distance. The starshade is similar to but should not be confused with the Aragoscope, [6] which is a proposed imaging device designed to use the diffraction of light around a perfectly-circular light-shield to produce an image. The starshade is a proposed sunflower-shaped coronagraph disc that was designed to block starlight that interferes with telescopic observations of other worlds. The "petals" of the "sunflower" shape of the starshade are designed to eliminate the diffraction that is the central feature of an Aragoscope.

The starshade is a spacecraft designed by Webster Cash, an astrophysicist at the University of Colorado at Boulder's Center for Astrophysics and Space Astronomy. [7] The proposed spacecraft was designed to work in tandem with space telescopes like the James Webb Space Telescope, which did not use it, or a new 4-meter telescope. [5] It would fly 72,000 km (45,000 mi) in front of a space telescope (between the telescope and a target star) and approximately 238,600 miles (384,000 km) away from Earth, outside of Earth's heliocentric orbit. [8] When unfurled, the starshade resembles a sunflower, with pointed protrusions around its circumference. The starshade acts as a very large coronagraph: it blocks light of a distant star, making it easier to observe associated planets. The unfurled starshade could reduce collected light from bright stars by as much as 10 billion-fold. Light that "leaks" around the edges would be used by the telescope as it scans the target system for planets. With the reduction of the harsh light, astronomers will be able to check exoplanet atmospheres tens of trillions of miles away for the potential chemical signatures of life. [1]

Objectives

Artistic vision showing the outline of the occulter ahead of a space telescope, with orbiting exoplanets stylistically added (not to scale) Artist's concept of the New Worlds Observatory.jpg
Artistic vision showing the outline of the occulter ahead of a space telescope, with orbiting exoplanets stylistically added (not to scale)

The New Worlds Mission aims to discover and analyze terrestrial extrasolar planets:

  1. Detection: First, using the space telescope and 'starshade', or occulter, exoplanetary systems will be directly detected.
  2. System mapping: Following detection, system mapping would involve the direct mapping of planetary systems through the detection of the planetary light separate from the parent star. In a sufficiently high-quality image, planets would appear as individual star-like objects. A series of images of the planetary system would allow measurements of planetary orbits, and the brightness and broadband colors of the planets would provide information about their basic nature.
  3. Planet studies: At this stage, detailed study of individual planets would take place. With a low noise level and a modest signal, spectroscopy and photometry can be performed. Spectroscopy allows scientists to perform chemical analysis of atmospheres and surfaces, which might hold clues to the existence of life elsewhere in the universe. Photometry will show variation in color and intensity as surface features rotate in and out of the field of view, allowing for the detection of oceans, continents, polar caps and clouds.
  4. Planet imaging: A large increase in capability is needed to achieve true planet imaging. However, techniques of interferometry show that, in principle, this is possible to achieve. Fifty to one hundred percent of a planet's surface could theoretically be mapped, depending on the planet's inclination.
  5. Planetary assessment: The final step in extrasolar planet studies would be the ability to study these distant worlds in the same way that Earth-observing systems study the Earth's surface. Such a telescope would need to be extremely large, to collect enough light to resolve and analyze small details on the planet's surface. However, these kinds of studies do not lie in the foreseeable future, for it takes square kilometers of collecting area to capture the needed signal.

In addition to finding and analyzing terrestrial planets, it can also discover and analyze gas giants. The New Worlds Mission will also find moons and rings orbiting extrasolar planets. This technique will involve direct imaging of planets by blocking the starlight with a starshade. It will study the moons and rings in detail and find whether moons can also support life if gas giant planets orbit in the habitable zones of parent stars.

Architecture

There are many possibilities for various New Worlds Missions, three of which are:

  1. New Worlds Discoverer proposed to use an existing space telescope (like the James Webb telescope), to find exoplanets. The size of the starshade could be optimized for the observing telescope.
  2. New Worlds Observer would use two spacecraft, one that has a dedicated telescope and one with a starshade to find exoplanets. The possibility of two starshades is also a consideration. One starshade to point towards the desired target while the other moves into position for the next target. This would eliminate some of the time delay in observing different systems and allow for many more targets to be observed in the same timespan. [2]
  3. New Worlds Imager would use many spacecraft/starshades. This would allow observers to resolve the planet and obtain true planetary imaging.

See also

Related Research Articles

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and also much more about exoplanets, including composition, environmental conditions and potential for life.

<span class="mw-page-title-main">Terrestrial Planet Finder</span> NASA concept study of an array of space telescopes

The Terrestrial Planet Finder (TPF) was a proposed project by NASA to construct a system of space telescopes for detecting extrasolar terrestrial planets. TPF was postponed several times and finally cancelled in 2011. There were two telescope systems under consideration, the TPF-I, which had several small telescopes, and TPF-C, which used one large telescope.

<span class="mw-page-title-main">Astronomical transit</span> Term in astronomy

In astronomy, a transit is the passage of a celestial body directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it.

<span class="mw-page-title-main">Occultation</span> Occlusion of an object by another object that passes between it and the observer

An occultation is an event that occurs when one object is hidden from the observer by another object that passes between them. The term is often used in astronomy, but can also refer to any situation in which an object in the foreground blocks from view (occults) an object in the background. In this general sense, occultation applies to the visual scene observed from low-flying aircraft when foreground objects obscure distant objects dynamically, as the scene changes over time.

<span class="mw-page-title-main">HD 209458 b</span> Gas giant exoplanet orbiting HD 209458

HD 209458 b is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years from the Solar System. The radius of the planet's orbit is 0.047 AU, or one-eighth the radius of Mercury's orbit. This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C. Its mass is 220 times that of Earth and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

<span class="mw-page-title-main">Coronagraph</span> Telescopic attachment designed to block out the direct light from a star

A coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).

<span class="mw-page-title-main">Lists of exoplanets</span>

These are lists of exoplanets. As of 10 January 2024, there are 5,569 confirmed exoplanets in 4,142 planetary systems, with 942 systems having more than one planet. Most of these were discovered by the Kepler space telescope. There are an additional 1,984 potential exoplanets from Kepler's first mission yet to be confirmed, as well as 977 from its "Second Light" mission and 4,584 from the Transiting Exoplanet Survey Satellite (TESS) mission.

<span class="mw-page-title-main">Occulting disk</span> Disk used in telescopes to block a bright object

An occulting disk is a small disk placed centrally in the eyepiece of a telescope or at its focal point, to block the view of a bright object so that fainter objects can be seen more easily.

<span class="mw-page-title-main">Methods of detecting exoplanets</span>

Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

<span class="mw-page-title-main">Epsilon Eridani b</span> Gas giant orbiting Epsilon Eridani

Epsilon Eridani b, also known as AEgir [sic], is an exoplanet approximately 10.5 light-years away orbiting the star Epsilon Eridani, in the constellation of Eridanus. The planet was discovered in 2000, and as of 2023 remains the only confirmed planet in its planetary system. It orbits at around 3.5 AU with a period of around 7.6 years, and has a mass around 0.6 times that of Jupiter. As of 2023, both the Extrasolar Planets Encyclopaedia and the NASA Exoplanet Archive list the planet as 'confirmed'.

<span class="mw-page-title-main">HR 8799</span> Star in the constellation Pegasus

HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. Those planets, along with Fomalhaut b, were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star.

<span class="mw-page-title-main">Fomalhaut b</span> Extrasolar object orbiting Fomalhaut

Fomalhaut b, formally named Dagon, is a directly imaged extrasolar object and former candidate planet observed near the A-type main-sequence star Fomalhaut, approximately 25 light-years away in the constellation of Piscis Austrinus. The object's discovery was initially announced in 2008 and confirmed in 2012 via images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. Under the working hypothesis that the object was a planet, it was reported in January 2013 that it had a highly elliptical orbit with a period of 1,700 Earth years. The planetary hypothesis has since fallen out of favor; more recently gathered data suggests a dust or debris cloud is far more likely, and more recent analysis placed the object on an escape trajectory.

<span class="mw-page-title-main">Gemini Planet Imager</span> Imaging instrument for the Gemini South Telescope in Chile

The Gemini Planet Imager (GPI) is a high contrast imaging instrument that was built for the Gemini South Telescope in Chile. The instrument achieves high contrast at small angular separations, allowing for the direct imaging and integral field spectroscopy of extrasolar planets around nearby stars. The collaboration involved in planning and building the Gemini Planet imager includes the American Museum of Natural History (AMNH), Dunlap Institute, Gemini Observatory, Herzberg Institute of Astrophysics (HIA), Jet Propulsion Laboratory, Lawrence Livermore National Lab (LLNL), Lowell Observatory, SETI Institute, The Space Telescope Science Institute (STSCI), the University of Montreal, University of California, Berkeley, University of California, Los Angeles (UCLA), University of California, Santa Cruz (UCSC), University of Georgia.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">Vortex coronagraph</span>

A vortex coronagraph is a type of optical instrument for telescopes that blocks out the glare of bright objects so that smaller objects near them can be seen. For example, extrasolar planets near their host star as seen from Earth or space telescopes in Earth's solar system. It is a type of coronagraph.

Astrophysics Strategic Mission Concept Studies [AMSCS] is a program within the National Aeronautics and Space Administration agency of the United States government for possible projects leading to probable prospective missions.

<span class="mw-page-title-main">Spectro-Polarimetric High-Contrast Exoplanet Research</span>

Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT-SPHERE) is an adaptive optics system and coronagraphic facility at the Very Large Telescope (VLT). It provides direct imaging as well as spectroscopic and polarimetric characterization of exoplanet systems. The instrument operates in the visible and near infrared, achieving exquisite image quality and contrast over a small field of view around bright targets.

N. Jeremy Kasdin is an American astrophysicist pursuing research into the detection and characterization of exoplanetary systems. He is the assistant dean of the engineering school at the University of San Francisco. Prior to this, he was a professor at Princeton University and vice dean of the School of Engineering and Applied Sciences. He is a pioneer of the starshade technique for suppressing starlight to enable the direct detection of Earth-like planets around nearby stars. He is also a recognized authority on orbital dynamics and optimal estimation of physical state, and co-authored the book "Engineering Dynamics: A Comprehensive Introduction". His earlier work included involvement with NASA's Terrestrial Planet Finder mission, a mission studied in the 2000s; an innovative concept for a planet-finding telescope with an unusual pupil, and Gravity Probe B. Kasdin has also been involved with developing a means of tracking birds or other migratory animals anywhere in the world.

<span class="mw-page-title-main">Large Ultraviolet Optical Infrared Surveyor</span> Proposed NASA space telescope

The Large Ultraviolet Optical Infrared Surveyor, commonly known as LUVOIR, is a multi-wavelength space telescope concept being developed by NASA under the leadership of a Science and Technology Definition Team. It is one of four large astrophysics space mission concepts studied in preparation for the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey.

<span class="mw-page-title-main">Habitable Exoplanets Observatory</span> Proposed space observatory to characterize exoplanets atmospheres

The Habitable Exoplanet Observatory (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and determine the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

References

  1. 1 2 CU Proposal To Image Distant Planets Is Funded For Second Round Of Study Archived July 2, 2014, at the Wayback Machine
  2. 1 2 The New Worlds Observer Archived 2016-11-18 at the Wayback Machine . (PDF) Dr. Webster Cash. University of Colorado, Boulder 2010.
  3. New Worlds Technology Development for the New Worlds Observer Archived 2016-03-05 at the Wayback Machine , (PDF) Dr. Webster Cash. University of Colorado, Boulder 2011.
  4. "The Extrasolar Planets Encyclopaedia". 2007-11-27. Archived from the original on 2007-12-04. Retrieved 2008-01-24.
  5. 1 2 Berger, Brian (December 4, 2006). "Northrop Grumman Concept Uses Shade to Find New Planets". Space. Archived from the original on 2009-05-25. Retrieved 2015-11-17.
  6. Cash, Webster (January 23, 2015). "New space telescope concept could image objects at far higher resolution than Hubble". Phys Org. Archived from the original on 24 January 2019. Retrieved 26 January 2015.
  7. "New Worlds Website". Archived from the original on 2019-06-02. Retrieved 2006-09-10.
  8. "Starshade Specifications". Archived from the original on 2018-07-07. Retrieved 2015-11-17.