Neutron Star Interior Composition Explorer

Last updated

NICER
NICER on the ISS.jpg
NICER telescope mounted on the Integrated Truss Structure of the International Space Station
Mission type Neutron star astrophysics
Operator NASA  / GSFC  / MIT
Website https://heasarc.gsfc.nasa.gov/docs/nicer/
Mission duration18 months (planned)
6 years, 6 months and 25 days (in progress)
Spacecraft properties
Launch mass372 kg (820 lb) [1]
Start of mission
Launch date3 June 2017, 21:07:38 UTC [2]
Rocket Falcon 9 Full Thrust, B1035.1
Launch site Kennedy Space Center, LC-39A
Contractor SpaceX
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Perigee altitude 402 km (250 mi)
Apogee altitude 407 km (253 mi)
Inclination 51.64°
Period 92.66 minutes
Instruments
X-ray Timing Instrument (XTI)
NICER - SEXTANT logo.png
NICER * SEXTANT mission patch
Explorer program
  ASTRO-H (NeXT)
SES-14 (GOLD) 
 

The Neutron Star Interior Composition ExploreR (NICER) is a NASA telescope on the International Space Station, designed and dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear physics environments embodied by neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei. As part of NASA's Explorer program, NICER enabled rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray (0.2–12 keV) band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena, and the mechanisms that underlie the most powerful cosmic particle accelerators known. [3] NICER achieved these goals by deploying, following the launch, and activation of X-ray timing and spectroscopy instruments. NICER was selected by NASA to proceed to formulation phase in April 2013. [4]

Contents

NICER-SEXTANT uses the same instrument to test X-ray timing for positioning and navigation, [5] and MXS is a test of X-ray timing communication. [6] In January 2018, X-ray navigation was demonstrated using NICER on ISS. [7]

Launch

By May 2015, NICER was on track for a 2016 launch, having passed its critical design review (CDR) and resolved an issue with the power being supplied by the ISS. [8] Following the loss of SpaceX CRS-7 in June 2015, which delayed future missions by several months, NICER was finally launched on 3 June 2017, [2] with the SpaceX CRS-11 ISS resupply mission aboard a Falcon 9 v1.2 launch vehicle. [9]

Science instrument

NICER's primary science instrument, called the X-ray Timing Instrument (XTI), is an array of 56 X-ray photon detectors. These detectors record the energies of the collected photons as well as with their time of arrival. A Global Positioning System (GPS) receiver enables accurate timing and positioning measurements. X-ray photons can be time-tagged with a precision of less than 300  ns. [10] In August 2022 a fast X-ray follow-up observation program was started with the MAXI instrument named "OHMAN (On-orbit Hookup of MAXI and NICER)" to detect sudden bursts in X-ray phenomena. [11]

During each ISS orbit, NICER will observe two to four targets. Gimbaling and a star tracker allow NICER to track specific targets while collecting science data. In order to achieve its science objectives, NICER will take over 15 million seconds of exposures over an 18-month period. [12]

X-ray navigation and communication experiments

An enhancement to the NICER mission, the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT), will act as a technology demonstrator for X-ray pulsar-based navigation (XNAV) techniques that may one day be used for deep-space navigation. [13]

XCOM

As part of NICER testing, a rapid-modulation X-ray device was developed called Modulated X-ray Source (MXS), which is being used to create an X-ray communication system (XCOM) demonstration. If approved and installed on the ISS, XCOM will transmit data encoded into X-ray bursts to the NICER platform, which may lead to the development of technologies that allow for gigabit bandwidth communication throughout the Solar System. [6] As of February 2019 the XCOM test is scheduled for spring 2019. [14] XCOM (inc MXS) was delivered to the ISS in May 2019. [15] Once the test was complete XCOM and the STP-H6 payload malfunctioned in September 2021. It was removed in November 2021 and disposed of on Cygnus NG-16. [16]

Selected results

In May 2018, NICER discovered an X-ray pulsar in the fastest stellar orbit yet discovered. [17] The pulsar and its companion star were found to orbit each other every 38 minutes. [17]

On 21 August 2019 (UTC; 20 August in the U.S.), NICER spotted the brightest X-ray burst so far observed. [18] It came from the neutron star SAX J1808.4−3658 about 11,000 light-years from Earth in the constellation Sagittarius.

See also

Related Research Articles

<span class="mw-page-title-main">Chandra X-ray Observatory</span> NASA space telescope launched in 1999

The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space ShuttleColumbia during STS-93 by NASA on July 23, 1999. Chandra was sensitive to X-ray sources 100 times fainter than any previous X-ray telescope, enabled by the high angular resolution of its mirrors. Since the Earth's atmosphere absorbs the vast majority of X-rays, they are not detectable from Earth-based telescopes; therefore space-based telescopes are required to make these observations. Chandra is an Earth satellite in a 64-hour orbit, and its mission is ongoing as of 2023.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Compton Gamma Ray Observatory</span> NASA space observatory designed to detect X-rays and gamma rays (1991–2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 16,300 kilograms (35,900 lb).

<span class="mw-page-title-main">Rossi X-ray Timing Explorer</span> NASA satellite of the Explorer program

The Rossi X-ray Timing Explorer (RXTE) was a NASA satellite that observed the time variation of astronomical X-ray sources, named after physicist Bruno Rossi. The RXTE had three instruments — an All Sky Monitor, the High-Energy X-ray Timing Experiment (HEXTE) and the Proportional Counter Array. The RXTE observed X-rays from black holes, neutron stars, X-ray pulsars and X-ray bursts. It was funded as part of the Explorer program, and was also called Explorer 69.

<span class="mw-page-title-main">Great Observatories program</span> Series of NASA satellites

NASA's series of Great Observatories satellites are four large, powerful space-based astronomical telescopes launched between 1990 and 2003. They were built with different technology to examine specific wavelength/energy regions of the electromagnetic spectrum: gamma rays, X-rays, visible and ultraviolet light, and infrared light.

<span class="mw-page-title-main">Reuven Ramaty High Energy Solar Spectroscopic Imager</span> NASA satellite of the Explorer program

Reuven Ramaty High Energy Solar Spectroscopic Imager was a NASA solar flare observatory. It was the sixth mission in the Small Explorer program (SMEX), selected in October 1997 and launched on 5 February 2002, at 20:58:12 UTC. Its primary mission was to explore the physics of particle acceleration and energy release in solar flares.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">Pulsar</span> Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">SAX J1808.4−3658</span> Neutron star in the constellation Sagittarius

The first accreting millisecond pulsar discovered in 1998 by the Italian-Dutch BeppoSAX satellite, SAX J1808.4−3658 revealed X-ray pulsations at the 401 Hz neutron star spin frequency when it was observed during a subsequent outburst in 1998 by NASA's RXTE satellite. The neutron star is orbited by a brown dwarf binary companion with a likely mass of 0.05 solar masses, every 2.01 hours. X-ray burst oscillations and quasi-periodic oscillations in addition to coherent X-ray pulsations have been seen from SAX J1808.4-3658, making it a Rosetta stone for interpretation of the timing behavior of low-mass X-ray binaries.

<span class="mw-page-title-main">NuSTAR</span> NASA X-ray space telescope of the Explorer program

NuSTAR is a NASA space-based X-ray telescope that uses a conical approximation to a Wolter telescope to focus high energy X-rays from astrophysical sources, especially for nuclear spectroscopy, and operates in the range of 3 to 79 keV.

X-ray pulsar-based navigation and timing (XNAV) or simply pulsar navigation is a navigation technique whereby the periodic X-ray signals emitted from pulsars are used to determine the location of a vehicle, such as a spacecraft in deep space. A vehicle using XNAV would compare received X-ray signals with a database of known pulsar frequencies and locations. Similar to GPS, this comparison would allow the vehicle to calculate its position accurately (±5 km). The advantage of using X-ray signals over radio waves is that X-ray telescopes can be made smaller and lighter. Experimental demonstrations have been reported in 2018.

<i>AstroSat</i> Space observatory

AstroSat is India's first dedicated multi-wavelength space telescope. It was launched on a PSLV-XL on 28 September 2015. With the success of this satellite, ISRO has proposed launching AstroSat-2 as a successor for AstroSat.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is the astronomical observation of gamma rays, the most energetic form of electromagnetic radiation, with photon energies above 100 keV. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

<span class="mw-page-title-main">Gravity and Extreme Magnetism Small Explorer</span> NASA satellite of the Explorer program

Gravity and Extreme Magnetism Small Explorer mission was a NASA space observatory mission. The main scientific goal of GEMS was to be the first mission to systematically measure the polarization of X-ray sources. GEMS would have provided data to help scientists study the shape of spacetime that has been distorted by a spinning black hole's gravity and the structure and effects of the magnetic fields around neutron stars. It was cancelled by NASA in June 2012 for potential cost overruns due to delays in developing the technology and never moved into the development phase.

<span class="mw-page-title-main">International X-ray Observatory</span> Cancelled American-ESA-Japanese space telescope project

The International X-ray Observatory (IXO) is a cancelled X-ray telescope that was to be launched in 2021 as a joint effort by NASA, the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA). In May 2008, ESA and NASA established a coordination group involving all three agencies, with the intent of exploring a joint mission merging the ongoing XEUS and Constellation-X Observatory (Con-X) projects. This proposed the start of a joint study for IXO. NASA was forced to cancel the observatory due to budget constraints in fiscal year 2012. ESA however decided to reboot the mission on its own developing Advanced Telescope for High Energy Astrophysics as a part of Cosmic Vision program.

<span class="mw-page-title-main">SpaceX CRS-11</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-11, also known as SpX-11, was a Commercial Resupply Service mission to the International Space Station, launched successfully on 3 June 2017. The mission was contracted by NASA and was flown by SpaceX. The mission utilized a Falcon 9 launch vehicle and was the first reuse of C106, a CRS Dragon cargo vessel that was previously flown on the CRS-4 mission.

<span class="mw-page-title-main">IXPE</span> NASA satellite of the Explorer program

Imaging X-ray Polarimetry Explorer, commonly known as IXPE or SMEX-14, is a space observatory with three identical telescopes designed to measure the polarization of cosmic X-rays of black holes, neutron stars, and pulsars. The observatory, which was launched on 9 December 2021, is an international collaboration between NASA and the Italian Space Agency (ASI). It is part of NASA's Explorers program, which designs low-cost spacecraft to study heliophysics and astrophysics.

<span class="mw-page-title-main">XPoSat</span> Indian space telescope

The X-ray Polarimeter Satellite (XPoSat) is an Indian Space Research Organisation (ISRO) planned space observatory to study polarisation of cosmic X-rays. It is scheduled to be launched on 1 January 2024 or later on a Polar Satellite Launch Vehicle (PSLV) - C58 mission, with a lifespan of at least five years.

Lowell Center for Space Science & Technology is a public research centre in Lowell, Massachusetts, affiliated by University of Massachusetts Lowell. The research centre has partners and grants from research giants like NASA, National Science Federation, BoldlyGo institute for its excellence in Space science research.

References

  1. "SpaceX CRS-11 Mission Overview" (PDF). NASA. Retrieved 3 June 2017.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  2. 1 2 Clark, Stephen (3 June 2017). "Reused Dragon cargo capsule launched on journey to space station". Spaceflight Now. Retrieved 3 June 2017.
  3. Gendreau, Keith C.; Arzoumanian, Zaven; Okajima, Takashi (September 2012). Takahashi, Tadayuki; Murray, Stephen S.; Den Herder, Jan-Willem A. (eds.). "The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft X-ray timing spectroscopy" (PDF). Proceedings of the SPIE: Space Telescopes and Instrumentation 2012, Ultraviolet to Gamma Ray. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 8443: 844313. Bibcode:2012SPIE.8443E..13G. doi:10.1117/12.926396. S2CID   119892783.
  4. Harrington, J. D. (5 April 2013). "NASA Selects Explorer Investigations for Formulation" (Press release). NASA. Retrieved 23 April 2013.
  5. Garner, Rob (17 July 2017). "NASA Neutron Star Mission Begins Science Operations". NASA. Retrieved 26 January 2018.
  6. 1 2 Keesey, Lori (4 November 2016). "NASA's NavCube Could Support an X-ray Communications Demonstration in Space — A NASA First". NASA. Retrieved 5 November 2016.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "ISS Utilization: NICER/SEXTANT". eoPortal. European Space Agency. Archived from the original on 8 February 2021. Retrieved 26 January 2018.
  8. Keesey, Lori (12 May 2015). "NASA's Multi-Purpose NICER/SEXTANT Mission on Track for 2016 Launch". NASA. Retrieved 27 October 2015.
  9. "NICER Manifested on SpaceX-11 ISS Resupply Flight". NICER News. NASA. 1 December 2015. Retrieved 14 June 2017. Previously scheduled for a December 2016 launch on SpaceX CRS-12, NICER will now fly to the International Space Station with two other payloads on SpaceX Commercial Resupply Services (CRS)-11, in the Dragon vehicle's unpressurized Trunk.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. Gendreau; et al. (2012). "The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy" (PDF). Each photon detected by NICER is time-tagged with an absolute precision of much better than 300 nanosecondsPD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "OHMAN (On-orbit Hookup of MAXI And NICER) has started! - immediate X-ray follow-up program combining JAXA and NASA instruments on ISS". ISAS. Retrieved 13 January 2023.
  12. "NICER: Neutron star Interior Composition Explorer" (PDF). NASAFacts. NASA. Retrieved 14 June 2017.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. Mitchell, Jason W.; Hassouneh, Munther A.; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; et al. (January 2015). SEXTANT - Station Explorer for X-ray Timing and Navigation Technology. AIAA Guidance, Navigation, and Control Conference. 5–9 January 2015 Kissimmee, Florida. GSFC-E-DAA-TN19095; 20150001327.
  14. NASA set to demonstrate X-ray communications in space February 2019
  15. X-ray communications experiment delivered to space station May 2019
  16. "STP-H6". Gunter's Space Page. Retrieved 30 July 2022.
  17. 1 2 Garner, Rob (10 May 2018). "X-ray Pulsar Found in Record-fast Orbit". NASA. Retrieved 12 May 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  18. NICER Telescope Spots Brightest X-Ray Burst Ever Observed