Mission type | Solar observation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Operator | NASA | ||||||||||
COSPAR ID | STEREO-A: 2006-047A STEREO-B: 2006-047B n | ||||||||||
SATCAT no. | STEREO-A: 29510 STEREO-B: 29511 | ||||||||||
Website | http://stereo.gsfc.nasa.gov/ http://stereo.jhuapl.edu/ | ||||||||||
Mission duration |
| ||||||||||
Spacecraft properties | |||||||||||
Manufacturer | Johns Hopkins University Applied Physics Laboratory | ||||||||||
Launch mass | STEREO-A: 620 kg STEREO-B: 620 kg [1] | ||||||||||
Dry mass | 547 kg (1,206 lb) | ||||||||||
Dimensions | 1.14 × 2.03 × 6.47 m 3.75 × 6.67 × 21.24 ft | ||||||||||
Power | 475 W | ||||||||||
Start of mission | |||||||||||
Launch date | October 26, 2006, 00:52 UTC | ||||||||||
Rocket | Delta II 7925-10L | ||||||||||
Launch site | Cape Canaveral SLC-17B | ||||||||||
Contractor | United Launch Alliance | ||||||||||
End of mission | |||||||||||
Last contact | STEREO-B: September 23, 2016 | ||||||||||
Orbital parameters | |||||||||||
Reference system | Heliocentric | ||||||||||
Period | STEREO-A: 346 days STEREO-B: 388 days | ||||||||||
| |||||||||||
STEREO (Solar TErrestrial RElations Observatory) is a solar observation mission. [2] Two nearly identical spacecraft (STEREO-A, STEREO-B) were launched in 2006 into orbits around the Sun that cause them to respectively pull farther ahead of and fall gradually behind the Earth. This enabled stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
Contact with STEREO-B was lost in 2014 after it entered an uncontrolled spin preventing its solar panels from generating enough power. It was resumed in 2018.
The two STEREO spacecraft were launched at 00:52 UTC on October 26, 2006, from Launch Pad 17B at the Cape Canaveral Air Force Station in Florida on a Delta II 7925-10L launcher into highly elliptical geocentric orbits. The apogee reached the Moon's orbit. On December 15, 2006, on the fifth orbit, the pair swung by the Moon for a gravity assist. Because the two spacecraft were in slightly different orbits, the "ahead" (A) spacecraft was ejected to a heliocentric orbit inside Earth's orbit, while the "behind" (B) spacecraft remained temporarily in a high Earth orbit. The B spacecraft encountered the Moon again on the same orbital revolution on January 21, 2007, being ejected from Earth orbit in the opposite direction from spacecraft A. Spacecraft B entered a heliocentric orbit outside the Earth's orbit. Spacecraft A took 347 days to complete one revolution of the Sun and Spacecraft B took 387 days. The A spacecraft/Sun/Earth angle will increase at 21.650° per year. The B spacecraft/Sun/Earth angle will change −21.999° per year. Given that the length of Earth's orbit is around 940 million kilometres, both craft have an average speed, in a rotating geocentric frame of reference in which the Sun is always in the same direction, of about 1.8 km/s, but the speed varies considerably depending on how close they are to their respective aphelion or perihelion (as well as on the position of Earth). Their current locations are shown here.
Over time, the STEREO spacecraft continued to separate from each other at a combined rate of approximately 44° per year. There were no final positions for the spacecraft. They achieved 90° separation on January 24, 2009, a condition known as quadrature. This was of interest because the mass ejections seen from the side on the limb by one spacecraft can potentially be observed by the in situ particle experiments of the other spacecraft. As they passed through Earth's Lagrangian points L4 and L5, in late 2009, they searched for Lagrangian (trojan) asteroids. On February 6, 2011, the two spacecraft were exactly 180° apart from each other, allowing the entire Sun to be seen at once for the first time. [3]
Even as the angle increases, the addition of an Earth-based view, e.g., from the Solar Dynamics Observatory, still provided full-Sun observations for several years. In 2015, contact was lost for several months when the STEREO spacecraft passed behind the Sun. They then started to approach Earth again, with closest approach in August 2023. They will not be recaptured into Earth orbit. [4]
On October 1, 2014, contact was lost with STEREO-B during a planned reset to test the craft's automation, in anticipation of the aforementioned solar "conjunction" period. The team originally thought that the spacecraft had begun to spin, decreasing the amount of power that could be generated by the solar panels. Later analysis of the received telemetry concluded that the spacecraft was in an uncontrolled spin of about 3° per second; this was too rapid to be immediately corrected using its reaction wheels, which would become oversaturated. [5] [4]
NASA used its Deep Space Network, first weekly and later monthly, to try to re-establish communications. [4]
After a silence of 22 months, contact was regained at 22:27 UTC on August 21, 2016, when the Deep Space Network established a lock on STEREO-B for 2.4 hours. [6] [5] [7]
Engineers planned to work and develop software to fix the spacecraft, but once its computer was powered up, there would only have been about 2 minutes to upload the fix before STEREO-B entered failure mode again. [8] Further, while the spacecraft was power-positive at the time of contact, its orientation would drift, and power levels fall. Two-way communication was achieved, and commands to begin recovering the spacecraft were sent through the rest of August and September. [5]
Six attempts at communication between September 27 and October 9, 2016, failed, and a carrier wave was not detected after September 23. Engineers determined that during an attempt to despin the spacecraft, a frozen thruster fuel valve probably led to the spin increasing rather than decreasing. [5] As STEREO-B moved along its orbit, it was hoped that its solar panels may again generate enough power to charge the battery.
Four years after the initial loss of contact, NASA terminated periodic recovery operations effective October 17, 2018. [9]
The principal benefit of the mission was stereoscopic images of the Sun. Because the satellites are at different points along the Earth's orbit, but distant from the Earth, they can photograph parts of the Sun that are not visible from the Earth. This permits NASA scientists to directly monitor the far side of the Sun, instead of inferring the activity on the far side from data that can be gleaned from Earth's view of the Sun. The STEREO satellites principally monitor the far side for coronal mass ejections — massive bursts of solar wind, solar plasma, and magnetic fields that are sometimes ejected into space. [10]
Since the radiation from coronal mass ejections, or CMEs, can disrupt Earth's communications, airlines, power grids, and satellites, more accurate forecasting of CMEs has the potential to provide greater warning to operators of these services. [10] Before STEREO, the detection of the sunspots that are associated with CMEs on the far side of the Sun was only possible using helioseismology, which only provides low-resolution maps of the activity on the far side of the Sun. Since the Sun rotates every 25 days, detail on the far side was invisible to Earth for days at a time before STEREO. The period that the Sun's far side was previously invisible was a principal reason for the STEREO mission. [11]
STEREO program scientist Madhulika Guhathakurta expected "great advances" in theoretical solar physics and space weather forecasting with the advent of constant 360° views of the Sun. [12] STEREO's observations are incorporated into forecasts of solar activity for airlines, power companies, satellite operators, and others. [13]
STEREO has also been used to discover 122 eclipsing binaries and study hundreds more variable stars. [14] STEREO can look at the same star for up to 20 days. [14]
On July 23, 2012, STEREO-A was in the path of the Carrington class CME of the solar storm of 2012. [15] This CME, it is estimated, if it had collided with Earth's magnetosphere, would have caused a geomagnetic storm of similar strength to the Carrington Event, the most intense geomagnetic storm in recorded history. [16] STEREO-A's instrumentation was able to collect and relay a significant amount of data about the event without being harmed.
Each of the spacecraft carries cameras, particle experiments and radio detectors in four instrument packages:
Each STEREO spacecraft had a dry mass of 547 kg (1,206 lb) and a launch mass of 619 kg (1,364 lb). In their stowed configuration, each had a length, width and height of 2.0 × 1.2 × 1.1 m (6.67 × 4.00 × 3.75 ft). Upon solar-array deployment, its width increased to 6.5 m (21.24 ft). [20] [21] With all of its instrument booms and antennae deployed, its dimensions are 7.5 × 8.7 × 5.9 m (24.5 × 28.6 × 19.2 ft). [22] The solar panels can produce an average of 596 watts of power, and the spacecraft consumes an average of 475 watts. [20] [21]
The STEREO spacecraft are 3-axis-stabilized, and each has a primary and backup miniature inertial measurement unit (MIMU) provided by Honeywell. [23] These measure changes to a spacecraft's attitude, and each MIMU contains three ring laser gyroscopes to detect angular changes. Additional attitude information is provided by the star tracker and the SECCHI Guide Telescope. [24]
STEREO's onboard computer systems are based on the Integrated Electronics Module (IEM), a device that combines core avionics in a single box. Each single-string spacecraft carries two CPUs, one for command and data handling and one for guidance and control. Both are radiation-hardened 25-megahertz IBM RAD6000 processors, based on POWER1 CPUs (predecessor of the PowerPC chip found in older Macintoshes). The computers, slow by current personal computer standards, are typical for the radiation requirements needed on the STEREO mission.
STEREO also carries Actel FPGAs that use triple modular redundancy for radiation hardening. The FPGAs hold the P24 MISC and CPU24 soft microprocessors. [25]
For data storage, each spacecraft carries a solid-state recorder able to store up to 1 gigabyte each. Its main processor collects and stores on the recorder images and other data from STEREO's instruments, which can then be sent back to Earth. The spacecraft have an X-band downlink capacity of between 427 and 750 kbit/s. [20] [21]
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.
Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.
A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.
The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered more than 5,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP). Originally planned as a two-year mission, SOHO continues to operate after almost 29 years in space; the mission has been extended until the end of 2025, subject to review and confirmation by ESA's Science Programme Committee.
Deep Space Climate Observatory is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.
Transition Region and Coronal Explorer was a NASA heliophysics and solar observatory designed to investigate the connections between fine-scale magnetic fields and the associated plasma structures on the Sun by providing high-resolution images and observation of the solar photosphere, the transition region, and the solar corona. A main focus of the TRACE instrument is the fine structure of coronal loops low in the solar atmosphere. TRACE is the third spacecraft in the Small Explorer program, launched on 2 April 1998, and obtained its last science image on 21 June 2010, at 23:56 UTC.
The Solar Orbiter (SolO) is a Sun-observing probe developed by the European Space Agency (ESA) with a National Aeronautics and Space Administration (NASA) contribution. Solar Orbiter, designed to obtain detailed measurements of the inner heliosphere and the nascent solar wind, will also perform close observations of the polar regions of the Sun which is difficult to do from Earth. These observations are important in investigating how the Sun creates and controls its heliosphere.
The RAD750 is a radiation-hardened single-board computer manufactured by BAE Systems Electronics, Intelligence & Support. The successor of the RAD6000, the RAD750 is for use in high-radiation environments experienced on board satellites and spacecraft. The RAD750 was released in 2001, with the first units launched into space in 2005.
The Solar Dynamics Observatory (SDO) is a NASA mission which has been observing the Sun since 2010. Launched on 11 February 2010, the observatory is part of the Living With a Star (LWS) program.
A solar telescope or a solar observatory is a special-purpose telescope used to observe the Sun. Solar telescopes usually detect light with wavelengths in, or not far outside, the visible spectrum. Obsolete names for Sun telescopes include heliograph and photoheliograph.
Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.
The Solar Sentinels was a series of proposed space missions to the Sun. Solar Sentinels was proposed in 2006 in conjunction with other Sun missions, and another simpler proposal was submitted in 2008.
Aditya-L1 is a coronagraphy spacecraft for studying the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian Space Research Institutes. It is orbiting at about 1.5 million km from Earth in a halo orbit around the Lagrange point 1 (L1) between the Earth and the Sun, where it will study the solar atmosphere, solar magnetic storms, and their impact on the environment around the Earth.
The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.
The solar storm of 2012 was a solar storm involving an unusually large and strong coronal mass ejection that occurred on July 23, 2012. It missed Earth by a margin of roughly nine days, as the Sun's equator rotates around its own axis once over a period of about 25 days.
A heliospheric imager is a wide-field camera that is designed to image the solar wind in interplanetary space, far from the Sun itself.
Vigil, formerly known as Lagrange, is a space weather mission developed by the European Space Agency. The mission will provide the ESA Space Weather Office with instruments able to monitor the Sun, its solar corona and interplanetary medium between the Sun and Earth, to provide early warnings of increased solar activity, to identify and mitigate potential threats to society and ground, airborne and space based infrastructure as well as to allow 4 to 5 days space weather forecasts. To this purpose the Vigil mission will place for the first time a spacecraft at Sun-Earth Lagrange point 5 (L5) from where it would get a 'side' view of the Sun, observing regions of solar activity on the solar surface before they turn and face Earth.
Polarimeter to Unify the Corona and Heliosphere (PUNCH) is a future mission by NASA to study the unexplored region from the middle of the solar corona out to 1 AU from the Sun. PUNCH will consist of a constellation of four microsatellites that through continuous 3D deep-field imaging, will observe the corona and heliosphere as elements of a single, connected system. The four microsatellites were initially scheduled to be launched in October 2023, but they have since been moved to a launch in rideshare with SPHEREx, scheduled for 27 February 2025.
Space Weather Follow On-Lagrange 1 (SWFO-L1) is a future spacecraft mission planned to monitor signs of solar storms, which may pose harm to Earth's telecommunication network. The spacecraft will be operated by the National Oceanic and Atmospheric Administration (NOAA), with launch scheduled for no earlier than September 2025. It is planned to be placed at the Sun–Earth L1 Lagrange point, a location between the Earth and the Sun. This will allow SWFO-L1 to continuously watch the solar wind and energetic particles heading for Earth. SWFO-L1 is an ESPA Class Spacecraft, sized for launch on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) Grande ring in addition to the rocket's primary payload. The spacecraft's Solar Wind Instrument Suite (SWIS) which includes three instruments will monitor solar wind, and the Compact Coronagraph (CCOR) will monitor the Sun's surroundings to image coronal mass ejection (CME). A CME is a large outburst of plasma sent from the Sun towards interplanetary space.