Viking program

Last updated

Viking
Viking Orbiter releasing the lander.jpg
Artist impression of a Viking orbiter releasing a lander descent capsule
Manufacturer Jet Propulsion Laboratory / Martin Marietta
Country of origin United States
Operator NASA / JPL
ApplicationsMars orbiter/lander
Specifications
Launch mass3,527 kilograms (7,776 lb)
PowerOrbiters: 620 watts (solar array)
Lander: 70 watts (two RTG units)
Regime Areocentric
Design lifeOrbiters: 4 years at Mars
Landers: 4–6 years at Mars
Dimensions
Production
StatusRetired
Built2
Launched2
Retired Viking 1 orbiter
August 17, 1980 [1]
Viking 1 lander
July 20, 1976 [1] (landing) to November 13, 1982 [1]

Viking 2 orbiter
July 25, 1978 [1]
Viking 2 lander
September 3, 1976 [1] (landing) to April 11, 1980 [1]
Maiden launch Viking 1
August 20, 1975 [1] [2]
Last launch Viking 2
September 9, 1975 [1] [3]

The Viking program consisted of a pair of identical American space probes, Viking 1 and Viking 2 , which landed on Mars in 1976. [1] The mission effort began in 1968 and was managed by the NASA Langley Research Center. [4] Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.

Contents

The Viking program grew from NASA's earlier, even more ambitious, Voyager Mars program, which was not related to the successful Voyager deep space probes of the late 1970s. Viking 1 was launched on August 20, 1975, and the second craft, Viking 2, was launched on September 9, 1975, both riding atop Titan IIIE rockets with Centaur upper stages. Viking 1 entered Mars orbit on June 19, 1976, with Viking 2 following on August 7.

After orbiting Mars for more than a month and returning images used for landing site selection, the orbiters and landers detached; the landers then entered the Martian atmosphere and soft-landed at the sites that had been chosen. The Viking 1 lander touched down on the surface of Mars on July 20, 1976, more than two weeks before Viking 2's arrival in orbit. Viking 2 then successfully soft-landed on September 3. The orbiters continued imaging and performing other scientific operations from orbit while the landers deployed instruments on the surface.

The project cost was roughly US$1 billion at the time of launch, [5] [6] equivalent to about $6 billion in 2022 dollars. [7] The mission was considered successful and is credited with helping to form most of the body of knowledge about Mars through the late 1990s and early 2000s. [8] [9]

Science objectives

Viking orbiters

The primary objectives of the two Viking orbiters were to transport the landers to Mars, perform reconnaissance to locate and certify landing sites, act as communications relays for the landers, and to perform their own scientific investigations. Each orbiter, based on the earlier Mariner 9 spacecraft, was an octagon approximately 2.5 m (8.2 ft) across. The fully fueled orbiter-lander pair had a mass of 3,527 kg (7,776 lb). After separation and landing, the lander had a mass of about 600 kg (1,300 lb) and the orbiter 900 kg (2,000 lb). The total launch mass was 2,328 kg (5,132 lb), of which 1,445 kg (3,186 lb) were propellant and attitude control gas. The eight faces of the ring-like structure were 0.457 m (18 in) high and were alternately 1.397 and 0.508 m (55 and 20 in) wide. The overall height was 3.29 m (10.8 ft) from the lander attachment points on the bottom to the launch vehicle attachment points on top. There were 16 modular compartments, 3 on each of the 4 long faces and one on each short face. Four solar panel wings extended from the axis of the orbiter, the distance from tip to tip of two oppositely extended solar panels was 9.75 m (32 ft).

Propulsion

The main propulsion unit was mounted above the orbiter bus. Propulsion was furnished by a bipropellant (monomethylhydrazine and nitrogen tetroxide) liquid-fueled rocket engine which could be gimballed up to 9  degrees. The engine was capable of 1,323  N (297  lbf ) thrust, providing a change in velocity of 1,480 m/s (3,300 mph). Attitude control was achieved by 12 small compressed-nitrogen jets.

An acquisition Sun sensor, a cruise Sun sensor, a Canopus star tracker and an inertial reference unit consisting of six gyroscopes allowed three-axis stabilization. Two accelerometers were also on board.

Communications were accomplished through a 20 W S-band (2.3 GHz) transmitter and two 20 W TWTAs. An X band (8.4 GHz) downlink was also added specifically for radio science and to conduct communications experiments. Uplink was via S band (2.1 GHz). A two-axis steerable parabolic dish antenna with a diameter of approximately 1.5 m was attached at one edge of the orbiter base, and a fixed low-gain antenna extended from the top of the bus. Two tape recorders were each capable of storing 1280 megabits. A 381-MHz relay radio was also available.[ citation needed ]

Power

The power to the two orbiter craft was provided by eight 1.57 m × 1.23 m (62 in × 48 in) solar panels, two on each wing. The solar panels comprised a total of 34,800 solar cells and produced 620 W of power at Mars. Power was also stored in two nickel-cadmium 30-A·h batteries.

The combined area of the four panels was 15 square meters (160 square feet), and they provided both regulated and unregulated direct current power; unregulated power was provided to the radio transmitter and the lander.

Two 30-amp·hour, nickel-cadmium, rechargeable batteries provided power when the spacecraft was not facing the Sun, during launch, while performing correction maneuvers and also during Mars occultation. [10]

Main findings

Mars image mosaic from the Viking 1 orbiter Mars Valles Marineris.jpeg
Mars image mosaic from the Viking 1 orbiter

By discovering many geological forms that are typically formed from large amounts of water, the images from the orbiters caused a revolution in our ideas about water on Mars. Huge river valleys were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and travelled thousands of kilometers. Large areas in the southern hemisphere contained branched stream networks, suggesting that rain once fell. The flanks of some volcanoes are believed to have been exposed to rainfall because they resemble those caused on Hawaiian volcanoes. Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then flowed across the surface. Normally, material from an impact goes up, then down. It does not flow across the surface, going around obstacles, as it does on some Martian craters. [11] [12] [13] Regions, called "Chaotic Terrain," seemed to have quickly lost great volumes of water, causing large channels to be formed. The amount of water involved was estimated to ten thousand times the flow of the Mississippi River. [14] Underground volcanism may have melted frozen ice; the water then flowed away and the ground collapsed to leave chaotic terrain.

Viking landers

Proof test article of the Viking lander NASM-A19790215000-NASM2016-02690.jpg
Proof test article of the Viking lander
Astronomer Carl Sagan stands next to a model of a Viking lander to provide scale Sagan large.jpg
Astronomer Carl Sagan stands next to a model of a Viking lander to provide scale

Each lander comprised a six-sided aluminium base with alternate 1.09 and 0.56 m (43 and 22 in) long sides, supported on three extended legs attached to the shorter sides. The leg footpads formed the vertices of an equilateral triangle with 2.21 m (7.3 ft) sides when viewed from above, with the long sides of the base forming a straight line with the two adjoining footpads. Instrumentation was attached inside and on top of the base, elevated above the surface by the extended legs. [15]

Each lander was enclosed in an aeroshell heat shield designed to slow the lander down during the entry phase. To prevent contamination of Mars by Earth organisms, each lander, upon assembly and enclosure within the aeroshell, was enclosed in a pressurized "bioshield" and then sterilized at a temperature of 111 °C (232 °F) for 40 hours. For thermal reasons, the cap of the bioshield was jettisoned after the Centaur upper stage powered the Viking orbiter/lander combination out of Earth orbit. [16]

Astronomer Carl Sagan helped to choose landing sites for both Viking probes. [17]

Entry, Descent and Landing (EDL)

Each lander arrived at Mars attached to the orbiter. The assembly orbited Mars many times before the lander was released and separated from the orbiter for descent to the surface. Descent comprised four distinct phases, starting with a deorbit burn. The lander then experienced atmospheric entry with peak heating occurring a few seconds after the start of frictional heating with the Martian atmosphere. At an altitude of about 6 kilometers (3.7 miles) and traveling at a velocity of 900 kilometers per hour (600 mph), the parachute deployed, the aeroshell released and the lander's legs unfolded. At an altitude of about 1.5 kilometers (5,000 feet), the lander activated its three retro-engines and was released from the parachute. The lander then immediately used retrorockets to slow and control its descent, with a soft landing on the surface of Mars. [18]

Mars Viking 12a001.png
First "clear" image ever transmitted from the surface of Mars – shows rocks near the Viking 1 lander (July 20, 1976).

At landing (after using rocket propellant) the landers had a mass of about 600 kg.

Propulsion

Propulsion for deorbit was provided by the monopropellant hydrazine (N2H4), through a rocket with 12 nozzles arranged in four clusters of three that provided 32 newtons (7.2 lbf) thrust, translating to a change in velocity of 180 m/s (590 ft/s). These nozzles also acted as the control thrusters for translation and rotation of the lander.

Terminal descent (after use of a parachute) and landing used three (one affixed on each long side of the base, separated by 120 degrees) monopropellant hydrazine engines. The engines had 18 nozzles to disperse the exhaust and minimize effects on the ground, and were throttleable from 276 to 2,667 newtons (62 to 600 lbf). The hydrazine was purified in order to prevent contamination of the Martian surface with Earth microbes. The lander carried 85 kg (187 lb) of propellant at launch, contained in two spherical titanium tanks mounted on opposite sides of the lander beneath the RTG windscreens, giving a total launch mass of 657 kg (1,448 lb). Control was achieved through the use of an inertial reference unit, four gyros, a radar altimeter, a terminal descent and landing radar, and the control thrusters.

Power

Power was provided by two radioisotope thermoelectric generator (RTG) units containing plutonium-238 affixed to opposite sides of the lander base and covered by wind screens. Each Viking RTG [19] was 28 cm (11 in) tall, 58 cm (23 in) in diameter, had a mass of 13.6 kg (30 lb) and provided 30 watts of continuous power at 4.4 volts. Four wet cell sealed nickel-cadmium 8 Ah (28,800  coulombs), 28 volt rechargeable batteries were also on board to handle peak power loads.

Payload

Image from Mars taken by the Viking 2 lander Viking2lander1.jpg
Image from Mars taken by the Viking 2 lander

Communications

Communications were accomplished through a 20-watt S-band transmitter using two traveling-wave tubes. A two-axis steerable high-gain parabolic antenna was mounted on a boom near one edge of the lander base. An omnidirectional low-gain S-band antenna also extended from the base. Both these antennae allowed for communication directly with the Earth, permitting Viking 1 to continue to work long after both orbiters had failed. A UHF (381 MHz) antenna provided a one-way relay to the orbiter using a 30 watt relay radio. Data storage was on a 40-Mbit tape recorder, and the lander computer had a 6000-word memory for command instructions.

Instruments

The lander carried instruments to achieve the primary scientific objectives of the lander mission: to study the biology, chemical composition (organic and inorganic), meteorology, seismology, magnetic properties, appearance, and physical properties of the Martian surface and atmosphere. Two 360-degree cylindrical scan cameras were mounted near one long side of the base. From the center of this side extended the sampler arm, with a collector head, temperature sensor, and magnet on the end. A meteorology boom, holding temperature, wind direction, and wind velocity sensors extended out and up from the top of one of the lander legs. A seismometer, magnet and camera test targets, and magnifying mirror are mounted opposite the cameras, near the high-gain antenna. An interior environmentally controlled compartment held the biology experiment and the gas chromatograph mass spectrometer. The X-ray fluorescence spectrometer was also mounted within the structure. A pressure sensor was attached under the lander body. The scientific payload had a total mass of approximately 91 kg (201 lb).

Biological experiments

The Viking landers conducted biological experiments designed to detect life in the Martian soil (if it existed) with experiments designed by three separate teams, under the direction of chief scientist Gerald Soffen of NASA. One experiment turned positive for the detection of metabolism (current life), but based on the results of the other two experiments that failed to reveal any organic molecules in the soil, most scientists became convinced that the positive results were likely caused by non-biological chemical reactions from highly oxidizing soil conditions. [20]

Mars Viking 11a097.png
Dust dunes and a large boulder taken by the Viking 1 lander.
Mars Viking 11d128.png
Trenches dug by the soil sampler of the Viking 1 lander.

Although there was a pronouncement by NASA during the mission saying that the Viking lander results did not demonstrate conclusive biosignatures in soils at the two landing sites, the test results and their limitations are still under assessment. The validity of the positive 'Labeled Release' (LR) results hinged entirely on the absence of an oxidative agent in the Martian soil, but one was later discovered by the Phoenix lander in the form of perchlorate salts. [21] [22] It has been proposed that organic compounds could have been present in the soil analyzed by both Viking 1 and Viking 2, but remained unnoticed due to the presence of perchlorate, as detected by Phoenix in 2008. [23] Researchers found that perchlorate will destroy organics when heated and will produce chloromethane and dichloromethane, the identical chlorine compounds discovered by both Viking landers when they performed the same tests on Mars. [24]

The question of microbial life on Mars remains unresolved. Nonetheless, on April 12, 2012, an international team of scientists reported studies, based on mathematical speculation through complexity analysis of the Labeled Release experiments of the 1976 Viking Mission, that may suggest the detection of "extant microbial life on Mars." [25] [26] In addition, new findings from re-examination of the Gas Chromatograph Mass Spectrometer (GCMS) results were published in 2018. [27]

Camera/imaging system

The leader of the imaging team was Thomas A. Mutch, a geologist at Brown University in Providence, Rhode Island. The camera uses a movable mirror to illuminate 12 photodiodes. Each of the 12 silicon diodes are designed to be sensitive to different frequencies of light.

Several broad band diodes (designated BB1, BB2, BB3, and BB4) are placed to focus accurately at distances between six and 43 feet away from the lander. [28]  A low resolution broad band diode was named SURVEY. [28]   There are also three narrow band low resolution diodes (named BLUE, GREEN and RED) for obtaining color images, and another three (IR1, IR2, and IR3) for infrared imagery. [28]

The cameras scanned at a rate of five vertical scan lines per second, each composed of 512 pixels. The 300 degree panorama images were composed of 9150 lines. The cameras' scan was slow enough that in a crew shot taken during development of the imaging system several members show up several times in the shot as they moved themselves as the camera scanned. [29] [30]

Viking control room at the Jet Propulsion Laboratory, days before the landing of Viking 1. Viking control room.jpg
Viking control room at the Jet Propulsion Laboratory, days before the landing of Viking 1.

Control systems

The Viking landers used a Guidance, Control and Sequencing Computer (GCSC) consisting of two Honeywell HDC 402 24-bit computers with 18K of plated-wire memory, while the Viking orbiters used a Command Computer Subsystem (CCS) using two custom-designed 18-bit serial processors. [31] [32] [33]

Financial cost of the Viking program

The two orbiters cost US$217 million at the time, which is about $1 billion in 2022 dollars. [34] [35] The most expensive single part of the program was the lander's life-detection unit, which cost about $60 million then or $400 million in 2022 dollars. [34] [35] Development of the Viking lander design cost $357 million. [34] This was decades before NASA's "faster, better, cheaper" approach, and Viking needed to pioneer unprecedented technologies under national pressure brought on by the Cold War and the aftermath of the Space Race, all under the prospect of possibly discovering extraterrestrial life for the first time. [34] The experiments had to adhere to a special 1971 directive that mandated that no single failure shall stop the return of more than one experimenta difficult and expensive task for a device with over 40,000 parts. [34]

The Viking camera system cost $27.3 million to develop, or about $200 million in 2022 dollars. [34] [35] When the Imaging system design was completed, it was difficult to find anyone who could manufacture its advanced design. [34] The program managers were later praised for fending off pressure to go with a simpler, less advanced imaging system, especially when the views rolled in. [34] The program did however save some money by cutting out a third lander and reducing the number of experiments on the lander. [34]

Overall NASA says that $1 billion in 1970s dollars was spent on the program, [5] [6] which when inflation-adjusted to 2022 dollars is about $6 billion. [35]

Mission end

The craft all eventually failed, one by one, as follows: [1]

CraftArrival dateShut-off dateOperational lifetimeCause of failure
Viking 2 orbiterAugust 7, 1976July 25, 19781 year, 11 months, 18 daysShut down after fuel leak in propulsion system.
Viking 2 landerSeptember 3, 1976April 11, 19803 years, 7 months, 8 daysShut down after battery failure.
Viking 1 orbiterJune 19, 1976August 17, 19804 years, 1-month, 19 daysShut down after depletion of attitude control fuel.
Viking 1 landerJuly 20, 1976November 13, 19826 years, 3 months, 22 daysShut down after human error during software update caused the lander's antenna to go down, terminating power and communication.

The Viking program ended on May 21, 1983. To prevent an imminent impact with Mars the orbit of Viking 1 orbiter was raised on August 7, 1980, before it was shut down 10 days later. Impact and potential contamination on the planet's surface is possible from 2019 onwards. [5]

The Viking 1 lander was found to be about 6 kilometers from its planned landing site by the Mars Reconnaissance Orbiter in December 2006. [36]

Message artifact

Each Viking lander carried a tiny dot of microfilm containing the names of several thousand people who had worked on the mission. [37] Several earlier space probes had carried message artifacts, such as the Pioneer plaque and the Voyager Golden Record. Later probes also carried memorials or lists of names, such as the Perseverance rover which recognizes the almost 11 million people who signed up to include their names on the mission.

Viking lander locations

Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Clickable image: Clicking on the labels will open a new article.
Legend:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Active (white lined, *) *
Inactive *
Planned (dash lined, ***)
(view * discuss) Mars Map.JPG
Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Mano cursor.svg Clickable image:Clicking on the labels will open a new article.
Legend:   Active (white lined, ※)  Inactive  Planned (dash lined, ⁂)
PhoenixIcon.png Beagle 2
CuriosityIcon.png
Curiosity
PhoenixIcon.png
Deep Space 2
RoverIcon.png Rosalind Franklin
PhoenixIcon.png InSight
Mars3landericon.jpg Mars 2
Mars3landericon.jpg Mars 3
Mars3landericon.jpg Mars 6
PhoenixIcon.png
Mars Polar Lander ↓
RoverIcon.png Opportunity
CuriosityIcon.png
Perseverance
PhoenixIcon.png Phoenix
EDMIcon.png
Schiaparelli EDM
SojournerIcon.png Sojourner
RoverIcon.png
Spirit
ZhurongIcon.jpg Zhurong
VikingIcon.png
Viking 1
VikingIcon.png Viking 2

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

The Mars program was a series of uncrewed spacecraft launched by the Soviet Union between 1960 and 1973. The spacecraft were intended to explore Mars, and included flyby probes, landers and orbiters.

<i>Viking 1</i> Robotic spacecraft sent to Mars

Viking 1 was the first of two spacecraft, along with Viking 2, each consisting of an orbiter and a lander, sent to Mars as part of NASA's Viking program. The lander touched down on Mars on July 20, 1976, the first successful Mars lander in history. Viking 1 operated on Mars for 2,307 days or 2245 Martian solar days, the longest Mars surface mission until the record was broken by the Opportunity rover on May 19, 2010.

<i>Viking 2</i> Space orbiter and lander sent to Mars

The Viking 2 mission was part of the American Viking program to Mars, and consisted of an orbiter and a lander essentially identical to that of the Viking 1 mission. Viking 2 was operational on Mars for 1281 sols. The Viking 2 lander operated on the surface for 1,316 days, or 1281 sols, and was turned off on April 12, 1980, when its batteries failed. The orbiter worked until July 25, 1978, returning almost 16,000 images in 706 orbits around Mars.

<span class="mw-page-title-main">Mars 2</span> Soviet space probe launched in 1971

The Mars 2 was an uncrewed space probe of the Mars program, a series of uncrewed Mars landers and orbiters launched by the Soviet Union beginning 19 May 1971. The Mars 2 and Mars 3 missions consisted of identical spacecraft, each with an orbiter and an attached lander. The orbiter is identical to the Venera 9 bus. The type of bus/orbiter is the 4MV. They were launched by a Proton-K heavy launch vehicle with a Blok D upper stage. The lander of Mars 2 became the first human-made object to reach the surface of Mars, although the landing system failed and the lander was lost.

<span class="mw-page-title-main">Mars 3</span> Soviet space probe launched in 1971, consisting of a Mars orbiter and lander

Mars 3 was a robotic space probe of the Soviet Mars program, launched May 28, 1971, nine days after its twin spacecraft Mars 2. The probes were identical robotic spacecraft launched by Proton-K rockets with a Blok D upper stage, each consisting of an orbiter and an attached lander. After the Mars 2 lander crashed on the Martian surface, the Mars 3 lander became the first spacecraft to attain a soft landing on Mars, on December 2, 1971. It failed 110 seconds after landing, having transmitted only a gray image with no details. The Mars 2 orbiter and Mars 3 orbiter continued to circle Mars and transmit images back to Earth for another eight months.

<i>Mars Pathfinder</i> Mission including first robotic rover to operate on Mars (1997)

Mars Pathfinder is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner, the first rover to operate outside the Earth–Moon system.

<i>Mars Global Surveyor</i> NASA Decommissioned Mars orbiter launched in 1996

Mars Global Surveyor (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through the atmosphere to the surface. As part of the larger Mars Exploration Program, Mars Global Surveyor performed atmospheric monitoring for sister orbiters during aerobraking, and helped Mars rovers and lander missions by identifying potential landing sites and relaying surface telemetry.

<i>Beagle 2</i> Failed Mars lander launched in 2003

The Beagle 2 is an inoperative British Mars lander that was transported by the European Space Agency's 2003 Mars Express mission. It was intended to conduct an astrobiology mission that would have looked for evidence of past life on Mars.

<span class="mw-page-title-main">Mars Exploration Rover</span> NASA mission to explore Mars via two rovers

NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, Spirit and Opportunity, exploring the planet Mars. It began in 2003 with the launch of the two rovers to explore the Martian surface and geology; both landed on Mars at separate locations in January 2004. Both rovers far outlived their planned missions of 90 Martian solar days: MER-A Spirit was active until March 22, 2010, while MER-B Opportunity was active until June 10, 2018.

<span class="mw-page-title-main">Exploration of Mars</span> Overview of the exploration of Mars

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions, with some failing before their observations could even begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<i>Mars Reconnaissance Orbiter</i> NASA spacecraft active since 2005

The Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to search for the existence of water on Mars and provide support for missions to Mars, as part of NASA's Mars Exploration Program. It was launched from Cape Canaveral on August 12, 2005, at 11:43 UTC and reached Mars on March 10, 2006, at 21:24 UTC. In November 2006, after six months of aerobraking, it entered its final science orbit and began its primary science phase.

<span class="mw-page-title-main">Mars Science Laboratory</span> Robotic mission that deployed the Curiosity rover to Mars in 2012

Mars Science Laboratory (MSL) is a robotic space probe mission to Mars launched by NASA on November 26, 2011, which successfully landed Curiosity, a Mars rover, in Gale Crater on August 6, 2012. The overall objectives include investigating Mars' habitability, studying its climate and geology, and collecting data for a human mission to Mars. The rover carries a variety of scientific instruments designed by an international team.

<i>Phoenix</i> (spacecraft) NASA Mars lander

Phoenix was an uncrewed space probe that landed on the surface of Mars on May 25, 2008, and operated until November 2, 2008. Phoenix was operational on Mars for 157 sols. Its instruments were used to assess the local habitability and to research the history of water on Mars. The mission was part of the Mars Scout Program; its total cost was $420 million, including the cost of launch.

<span class="mw-page-title-main">HiRISE</span> Camera on board the Mars Reconnaissance Orbiter

High Resolution Imaging Science Experiment is a camera on board the Mars Reconnaissance Orbiter which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction of the University of Arizona's Lunar and Planetary Laboratory by Ball Aerospace & Technologies Corp. It consists of a 0.5 m (19.7 in) aperture reflecting telescope, the largest so far of any deep space mission, which allows it to take pictures of Mars with resolutions of 0.3 m/pixel, resolving objects below a meter across.

<span class="mw-page-title-main">Mars landing</span> Landing of a spacecraft on the surface of Mars

A Mars landing is a landing of a spacecraft on the surface of Mars. Of multiple attempted Mars landings by robotic, uncrewed spacecraft, ten have had successful soft landings. There have also been studies for a possible human mission to Mars including a landing, but none have been attempted. Soviet Union’s Mars 3, which landed in 1971, was the first successful Mars landing. As of 2023, the Soviet Union, United States and China have conducted Mars landings successfully.

<span class="mw-page-title-main">Lunae Palus quadrangle</span> Quadrangle map of Mars

The Lunae Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is also referred to as MC-10. Lunae Planum and parts of Xanthe Terra and Chryse Planitia are found in the Lunae Palus quadrangle. The Lunae Palus quadrangle contains many ancient river valleys.

<span class="mw-page-title-main">InSight</span> Mars lander, arrived November 2018

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission was a robotic lander designed to study the deep interior of the planet Mars. It was manufactured by Lockheed Martin Space, was managed by NASA's Jet Propulsion Laboratory (JPL), and two of its three scientific instruments were built by European agencies. The mission launched on 5 May 2018 at 11:05:01 UTC aboard an Atlas V-401 launch vehicle and successfully landed at Elysium Planitia on Mars on 26 November 2018 at 19:52:59 UTC. InSight was active on Mars for 1440 sols.

<span class="mw-page-title-main">Tianwen-1</span> Interplanetary mission by China to place an orbiter, lander, and rover on Mars

Tianwen-1 Chinese: 天问一号 is an interplanetary mission by the China National Space Administration (CNSA) which sent a robotic spacecraft to Mars, consisting of 6 spacecraft: an orbiter, two deployable cameras, lander, remote camera, and the Zhurong rover. The spacecraft, with a total mass of nearly five tons, is one of the heaviest probes launched to Mars and carries 14 scientific instruments. It is the first in a series of planned missions undertaken by CNSA as part of its Planetary Exploration of China program.

The following outline is provided as an overview of and topical guide to Mars:

References

  1. 1 2 3 4 5 6 7 8 9 10 Williams, David R. Dr. (December 18, 2006). "Viking Mission to Mars". NASA. Archived from the original on December 6, 2023. Retrieved February 2, 2014.
  2. Nelson, Jon. "Viking 1". JPL. Archived from the original on October 24, 2023. Retrieved February 2, 2014.
  3. Nelson, Jon. "Viking 2". JPL. Archived from the original on October 8, 2023. Retrieved February 2, 2014.
  4. Soffen, G. A. (July–August 1978). "Mars and the Remarkable Viking Results." Journal of Spacecraft and Rockets. 15 (4): 193-200.
  5. 1 2 3 "Viking 1 Orbiter spacecraft details". NASA Space Science Data Coordinated Archive . NASA. March 20, 2019. Retrieved July 10, 2019.
  6. 1 2 Howell, Elizabeth (October 26, 2012). "Viking 1: First U.S. Lander on Mars". Space.com . Archived from the original on September 6, 2023. Retrieved December 13, 2016.
  7. Johnston, Louis; Williamson, Samuel H. (2023). "What Was the U.S. GDP Then?". MeasuringWorth. Retrieved November 30, 2023. United States Gross Domestic Product deflator figures follow the Measuring Worth series.
  8. "The Viking Program". The Center for Planetary Science. Archived from the original on November 20, 2023. Retrieved April 13, 2018.
  9. "Viking Lander". California Science Center. July 3, 2014. Archived from the original on May 27, 2023. Retrieved April 13, 2018.
  10. "Viking Fact Sheet" (PDF). Jet Propulsion Laboratory. Archived from the original (PDF) on March 10, 2012. Retrieved March 27, 2012.
  11. Kieffer, Hugh H.; Jakosky, Bruce M.; Snyder, Conway W.; Matthews, Mildred S., eds. (1992). Mars. University of Arizona Press. ISBN   978-0-8165-1257-7. LCCN   92010951 . Retrieved March 7, 2011.
  12. Raeburn, Paul (1998). Mulroy, Kevin (ed.). Mars: Uncovering the Secrets of the Red Planet. National Geographic Society. ISBN   0-7922-7373-7. LCCN   98013991.
  13. Moore, Patrick; Hunt, Garry; Nicolson, Iain; Cattermole, Peter (1990). Garlick, Judy (ed.). The Atlas of the Solar System. Mitchell Beazley. ISBN   0-86134-125-2.
  14. Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World. Picador. ISBN   0-312-24551-3.
  15. Hearst Magazines (June 1976). "Amazing Search for Life On Mars". Popular Mechanics. Hearst Magazines. pp. 61–63.
  16. Soffen, G. A.; Snyder, C. W. (August 27, 1976). "The First Viking Mission to Mars". Science . 193 (4255): 759–766. Bibcode:1976Sci...193..759S. doi:10.1126/science.193.4255.759. PMID   17747776. Archived from the original on February 11, 2023. Retrieved December 21, 2023.
  17. Kragh, Helge. "Carl Sagan". Encyclopædia Britannica . Archived from the original on November 8, 2023. Retrieved August 9, 2022.
  18. "Viking". astro.if.ufrgs.br. Archived from the original on August 13, 2023.
  19. "SNAP-19 Radioisotope Thermoelectric Generator Fact Sheet by Energy Research & Development Administration (ERDA) Diagram 2 - The Energy Research and Development Administration". Google Arts & Culture. Retrieved August 9, 2022.
  20. BEEGLE, LUTHER W.; et al. (August 2007). "A Concept for NASA's Mars 2016 Astrobiology Field Laboratory". Astrobiology. 7 (4): 545–577. Bibcode:2007AsBio...7..545B. doi:10.1089/ast.2007.0153. PMID   17723090.
  21. Johnson, John (August 6, 2008). "Perchlorate found in Martian soil". Los Angeles Times . Archived from the original on April 19, 2023.
  22. "Martian Life Or Not? NASA's Phoenix Team Analyzes Results". Science Daily. August 6, 2008. Archived from the original on November 18, 2023.
  23. Navarro–Gonzáles, Rafael; Edgar Vargas; José de la Rosa; Alejandro C. Raga; Christopher P. McKay (December 15, 2010). "Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars". Journal of Geophysical Research: Planets. Vol. 115, no. E12010. Archived from the original on January 9, 2011. Retrieved January 7, 2011.
  24. Than, Ker (April 15, 2012). "Life on Mars Found by NASA's Viking Mission". National Geographic. Archived from the original on April 15, 2012. Retrieved April 13, 2018.
  25. Bianciardi, Giorgio; Miller, Joseph D.; Straat, Patricia Ann; Levin, Gilbert V. (March 2012). "Complexity Analysis of the Viking Labeled Release Experiments". IJASS. 13 (1): 14–26. Bibcode:2012IJASS..13...14B. doi: 10.5139/IJASS.2012.13.1.14 .
  26. Klotz, Irene (April 12, 2012). "Mars Viking Robots 'Found Life'". DiscoveryNews . Retrieved April 16, 2012.
  27. Guzman, Melissa; McKay, Christopher P.; Quinn, Richard C.; Szopa, Cyril; Davila, Alfonso F.; Navarro-González, Rafael; Freissinet, Caroline (2018). "Identification of Chlorobenzene in the Viking Gas Chromatograph-Mass Spectrometer Data Sets: Reanalysis of Viking Mission Data Consistent With Aromatic Organic Compounds on Mars" (PDF). Journal of Geophysical Research: Planets. 123 (7): 1674–1683. Bibcode:2018JGRE..123.1674G. doi:10.1029/2018JE005544. ISSN   2169-9100. S2CID   133854625. Archived (PDF) from the original on November 3, 2020.
  28. 1 2 3 "PDS: Instrument Information". pds.nasa.gov. Retrieved March 28, 2023.
  29. The Viking Lander Imaging Team (1978). "Chapter 8: Cameras Without Pictures". The Martian Landscape. NASA. p. 22.
  30. McElheny, Victor K. (July 21, 1976). "Viking Cameras Light in Weight, Use Little Power, Work Slowly". The New York Times . Archived from the original on February 22, 2021. Retrieved September 28, 2013.
  31. Tomayko, James (March 1988). Computers in Spaceflight: The NASA Experience (Technical report). NASA. CR-182505. Archived from the original on May 6, 2023. Retrieved February 6, 2010.
  32. Holmberg, Neil A.; Robert P. Faust; H. Milton Holt (November 1980). "NASA Reference Publication 1027: Viking '75 spacecraft design and test summary. Volume 1 – Lander design" (PDF). NASA. Retrieved February 6, 2010.
  33. Holmberg, Neil A.; Robert P. Faust; H. Milton Holt (November 1980). "NASA Reference Publication 1027: Viking '75 spacecraft design and test summary. Volume 2 – Orbiter design" (PDF). NASA. Retrieved February 6, 2010.
  34. 1 2 3 4 5 6 7 8 9 McCurdy, Howard E. (2001). Faster, Better, Cheaper: Low-Cost Innovation in the U.S. Space Program. JHU Press. p. 68. ISBN   978-0-8018-6720-0.
  35. 1 2 3 4 As the Viking program was a government expense, the inflation index of the United States Nominal Gross Domestic Product per capita is used for the inflation-adjusting calculation.
  36. Chandler, David (December 5, 2006). "Probe's powerful camera spots Vikings on Mars". New Scientist. Retrieved October 8, 2013.
  37. "Visions of Mars: Then and Now". The Planetary Society.

Further reading