Names |
|
---|---|
Mission type | Mars atmospheric research |
Operator | NASA |
COSPAR ID | 2013-063A |
SATCAT no. | 39378 |
Website | Official website |
Mission duration | 2 years (planned) Science phase extended indefinitely 9 years, 9 months, 16 days (in progress) |
Spacecraft properties | |
Manufacturer | Lockheed Martin Space Systems |
Launch mass | 2,454 kg (5,410 lb) [1] |
Dry mass | 809 kg (1,784 lb) |
Payload mass | 65 kg (143 lb) |
Dimensions | 2.3 m × 2.3 m × 2 m |
Power | 1135 watts [2] |
Start of mission | |
Launch date | 18 November 2013, 18:28:00 UTC |
Rocket | Atlas V 401 (AV-038) |
Launch site | Cape Canaveral, SLC-41 |
Contractor | United Launch Alliance |
Orbital parameters | |
Reference system | Areocentric orbit |
Regime | Elliptic orbit |
Periareon altitude | 150 km (93 mi) |
Apoareon altitude | 6,200 km (3,900 mi) |
Inclination | 75° |
Period | 4.5 hours |
Mars orbiter | |
Orbital insertion | 22 September 2014, 02:24 UTC [3] MSD 50025 08:07 AMT |
Maven mission logo |
MAVEN is a NASA spacecraft orbiting Mars to study the loss of that planet's atmospheric gases to space, providing insight into the history of the planet's climate and water. [4] The name is an acronym for "Mars Atmosphere and Volatile Evolution" while the word maven also denotes "a person who has special knowledge or experience; an expert". [5] [6] MAVEN was launched on an Atlas V rocket from Cape Canaveral Air Force Station, Florida, on 18 November 2013 UTC and went into orbit around Mars on 22 September 2014 UTC. The mission is the first by NASA to study the Mars atmosphere. The probe is analyzing the planet's upper atmosphere and ionosphere to examine how and at what rate the solar wind is stripping away volatile compounds.
The principal investigator for the mission is Shannon Curry at the University of California, Berkeley. She took over from Bruce Jakosky of the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder, who proposed and led the mission until 2021. [4] The project cost $582.5 million to build, launch, and operate through its two-year prime mission. [7]
Proposed in 2006, the mission was the second of NASA's Mars Scout Program, which had previously yielded Phoenix. It was selected for development for flight in 2008. [8]
On 2 August 2013, the MAVEN spacecraft arrived at Kennedy Space Center, in Florida to begin launch preparations. [9]
On 1 October 2013, only seven weeks before launch, a government shutdown caused suspension of work for two days and initially threatened to force a 26-month postponement of the mission. With the spacecraft nominally scheduled to launch on 18 November 2013, a delay beyond 7 December 2013 would have caused MAVEN to miss the launch window as Mars moved too far out of alignment with the Earth. [10]
However, two days later, on 3 October 2013, a public announcement was made that NASA had deemed the 2013 MAVEN launch so essential to ensuring future communication with current NASA assets on Mars — the rovers Opportunity and Curiosity — that emergency funding was authorized to restart spacecraft processing in preparation for an on-time launch. [11]
Features on Mars that resemble dry riverbeds and the discovery of minerals that form in the presence of water indicate that Mars once had a dense enough atmosphere and was warm enough for liquid water to flow on the surface. However, that thick atmosphere was somehow lost to space. Scientists suspect that over millions of years, Mars lost 99% of its atmosphere as the planet's core cooled and its magnetic field decayed, allowing the solar wind to sweep away most of the water and volatile compounds that the atmosphere once contained. [12]
The goal of MAVEN is to determine the history of the loss of atmospheric gases to space, providing answers about Martian climate evolution. By measuring the rate with which the atmosphere is currently escaping to space and gathering enough information about the relevant processes, scientists will be able to infer how the planet's atmosphere evolved over time. The MAVEN mission's primary scientific objectives are:
MAVEN launched from the Cape Canaveral Air Force Station (CCAFS) on 18 November 2013, using an Atlas V 401 launch vehicle. [13] [14] It reached Mars on 22 September 2014, and was inserted into an elliptic orbit approximately 6,200 km (3,900 mi) by 150 km (93 mi) above the planet's surface. [14]
In October 2014, as the spacecraft was being fine-tuned to start its primary science mission, the comet Siding Spring was also performing a close flyby of Mars. The researchers had to maneuver the craft to mitigate harmful effects of the comet, but while doing so, were able to observe the comet and perform measurements on the composition of expelled gases and dust. [15]
On 16 November 2014, investigators completed MAVEN's commissioning activities and began its primary science mission, scheduled to last one year. [16] During that time, MAVEN had observed a nearby comet, measured how volatile gases are swept away by solar wind, and performed four "deep dips" down to the border of the upper and lower atmospheres to better characterize the planet's entire upper atmosphere. [17] In June 2015, the science phase was extended through September 2016, allowing MAVEN to observe the Martian atmosphere through the entirety of the planet's seasons. [18]
On 3 October 2016, MAVEN completed one full Martian year of scientific observations. It had been approved for an additional 2-year extended mission through September 2018. All spacecraft systems were still operating as expected. [19]
In March 2017, MAVEN's investigators had to perform a previously unscheduled maneuver to avoid colliding with Phobos the following week. [20]
On 5 April 2019, the navigation team completed a two-month aerobraking maneuver to lower MAVEN's orbit and enable it to better serve as a communications relay for current landers as well as the rover Perseverance . This new elliptic orbit is approximately 4,500 km (2,800 mi) by 130 km (81 mi). With 6.6 orbits per Earth day, the lower orbit allows more frequent communication with rovers. [21]
As of September 2020, the spacecraft is continuing its science mission as well, with all instruments still operating and with enough fuel to last at least until 2030. [21]
On August 31, 2021, Shannon Curry became the Principal Investigator of the mission. [22]
NASA became aware of failures in the MAVEN's inertia measurement units (IMU) in late 2021, necessary for the probe to maintain its orbit; having already moved from the main IMU to the backup one in 2017, they saw the backup ones showing signs of failure. In February 2022, both IMUs had appeared to have lost the ability to perform its measurement properly. After doing a heartbeat termination to restore the use of the backup IMU, NASA engineers set to reprogram MAVEN to use an "all stellar" mode using star positions to maintain its altitude, eliminating the reliance on the IMUs. This was put into place in April 2022 and completed by May 28, 2022, but during this period, MAVEN could not be used for scientific observations or to relay communications to Earth from the rovers Curiosity and Perseverance and the Insight lander. Reduced communication was handled by other Mars orbiters. [23]
MAVEN was built and tested by Lockheed Martin Space Systems. Its design is based on those of Mars Reconnaissance Orbiter and 2001 Mars Odyssey . The orbiter has a cubical shape of about 2.3 m × 2.3 m × 2 m (7 ft 7 in × 7 ft 7 in × 6 ft 7 in) high, [24] with two solar arrays that hold the magnetometers on both ends. The total length is 11.4 m (37 ft). [25]
NASA's Jet Propulsion Laboratory provided an Electra ultra high frequency (UHF) relay radio payload which has a data return rate of up to 2048 kbit/s. [26] The highly elliptical orbit of the MAVEN spacecraft may limit its usefulness as a relay for operating landers on the surface, although the long view periods of MAVEN's orbit have afforded some of the largest relay data returns to date of any Mars orbiter. [27] During the mission's first year of operations at Mars — the primary science phase — MAVEN served as a backup relay orbiter. In the extended mission period of up to ten years, MAVEN will provide UHF relay service for present and future Mars rovers and landers. [18]
The University of Colorado Boulder, University of California, Berkeley, and Goddard Space Flight Center each built a suite of instruments for the spacecraft, and they include: [28]
Built by the University of California, Berkeley Space Sciences Laboratory:
Built by the University of Colorado Boulder Laboratory for Atmospheric and Space Physics:
Built by Goddard Space Flight Center:
SWEA, SWIA, STATIC, SEP, LPW, and MAG are part of the Particles and Fields instrument suite, IUVS is the Remote Sensing instrument suite, and NGIMS is its own eponymous suite.
MAVEN cost US$582.5 million to build, launch, and operate for its prime mission, nearly US$100 million less than originally estimated. Of this total, US$366.8 million was for development, US$187 million for launch services, and US$35 million was for the 2-year prime mission. On average, NASA spends US$20 million annually on MAVEN's extended operations. [7]
Mars loses water into its thin atmosphere by evaporation. There, solar radiation can split the water molecules into their components, hydrogen and oxygen. The hydrogen, as the lightest element, then tends to rise far up to the highest levels of the Martian atmosphere, where several processes can strip it away into space, to be forever lost to the planet. This loss was thought to proceed at a fairly constant rate, but MAVEN's observations of Mars's atmospheric hydrogen through a full Martian year (almost two Earth years) show that the escape rate is highest when Mars's orbit brings it closest to the Sun, and only one-tenth as great when it is at its farthest. [39]
On 5 November 2015, NASA announced that data from MAVEN shows that the deterioration of Mars's atmosphere increases significantly during solar storms. That loss of atmosphere to space likely played a key role in Mars's gradual shift from its carbon dioxide–dominated atmosphere – which had kept Mars relatively warm and allowed the planet to support liquid surface water – to the cold, arid planet seen today. This shift took place between about 4.2 and 3.7 billion years ago. [40] Atmospheric loss was especially notable during an interplanetary coronal mass ejection in March 2015. [41]
In 2014, MAVEN researchers detected widespread aurora throughout the planet, even close to the equator. Given the localized magnetic fields on Mars (as opposed to Earth's global magnetic field), aurora appear to form and distribute in different ways on Mars, creating what scientists call diffuse aurora. Researchers determined that the source of the particles causing the aurorae were a huge surge of electrons originating from the Sun. These highly energetic particles were able to penetrate far deeper into Mars's atmosphere than they would have on Earth, creating aurora much closer to the surface of the planet (~60 km as opposed to 100–500 km on Earth). [43]
Scientists also discovered proton aurora, different from the so-called typical aurora which is produced by electrons. Proton aurora were previously only detected on Earth. [44]
The fortuitous arrival of MAVEN just before a flyby of the comet Siding Spring gave researchers a unique opportunity to observe both the comet itself as well as its interactions with the Martian atmosphere. The spacecraft's IUVS instrument detected intense ultraviolet emissions from magnesium and iron ions, a result from the comet's meteor shower, which were much stronger than anything ever detected on Earth. [45] The NGIMS instrument was able to directly sample dust from this Oort Cloud comet, detecting at least eight different types of metal ions. [46]
In 2017, results were published detailing the detection of metal ions in Mars's ionosphere. This is the first time metal ions have been detected in any planet's atmosphere other than Earth's. It was also noted that these ions behave and are distributed differently in the atmosphere of Mars given that the red planet has a much weaker magnetic field than our own. [47]
In September 2017, NASA reported a temporary doubling of radiation levels on the surface of Mars, as well as an aurora 25 times brighter than any observed earlier. This occurred due to a massive, and unexpected, solar storm. [48] The observation provided insight into how changes in radiation levels might impact the planet's habitability, helping NASA researchers understand how to predict as well as mitigate effects on future human Mars explorers.
2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment. The data Odyssey obtains is intended to help answer the question of whether life once existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Curiosity rover, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of his and Stanley Kubrick's 1968 film 2001: A Space Odyssey.
The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System – visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.
The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions, with some failing before their observations could even begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.
Nozomi was a Japanese Mars orbiter that failed to reach Mars due to electrical failure. It was constructed by the Institute of Space and Astronautical Science, University of Tokyo and launched on July 4, 1998, at 03:12 JST with an on-orbit dry mass of 258 kg and 282 kg of propellant. The Nozomi mission was terminated on December 31, 2003.
Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.
The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner and colder than Earth's having a max density 20g/m3 with a temperature generally below zero down to -60 Celsius. The average surface pressure is about 610 pascals (0.088 psi) which is less than 1% of the Earth's value.
The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft has enough fuel to remain operational until 2040.
Bruce Martin Jakosky is a professor of Geological Sciences and associate director of the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder. He has been involved with the Viking, Solar Mesosphere Explorer, Clementine, Mars Observer, Mars Global Surveyor, Mars Odyssey, Mars Science Laboratory and MAVEN spacecraft missions, and is involved in planning future spacecraft missions.
C/2013 A1 is an Oort cloud comet discovered on 3 January 2013 by Robert H. McNaught at Siding Spring Observatory using the 0.5-meter (20 in) Uppsala Southern Schmidt Telescope.
The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.
DAVINCI is a planned mission for an orbiter and atmospheric probe to the planet Venus. Together with the separate VERITAS mission, which will also study Venus, it was selected by NASA on 2 June 2021 to be part of their Discovery Program. Its acronym is inspired by Leonardo da Vinci in honor of his scientific innovations, aerial sketches and constructions.
The following outline is provided as an overview of and topical guide to Mars:
SWAP is a science instrument aboard the unmanned New Horizons space probe, which was designed to fly by dwarf planet Pluto. SWAP was designed to record Solar Wind en route, at, and beyond Pluto. At Pluto, SWAP's purpose was to record the relationship between the solarwind and ions and/or material entering space from the atmosphere of Pluto.
Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI), is an instrument on the New Horizons space probe to Pluto and beyond, it is designed to measure ions and electrons. Specifically, it is focused on measuring ions escaping from the atmosphere of Pluto during the 2015 flyby. It is one of seven major scientific instruments aboard the spacecraft. The spacecraft was launched in 2006, flew by Jupiter the following year, and went onto flyby Pluto in 2015 where PEPSSI was able to record and transmit back to Earth its planned data collections.
REX or Radio Science Experiment is an experiment on the New Horizons space probe to measure properties of the atmosphere of Pluto during the 2015 flyby.
Shannon Curry is a planetary physicist and the Principal Investigator of the NASA Mars Scout mission MAVEN. Dr. Curry is a researcher at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and an Associate Professor in the university's Astrophysics and Planetary Sciences (APS) Department. Prior to this, she served as the Deputy Assistant Director of Planetary Science at the Space Sciences Laboratory at the University of California, Berkeley.
Jane Lee Fox is a physicist known for her research on the atmosphere of planets including Mars and Venus. She has many published works at her current institution, Wright State University.
In 1994, the European Space Agency's Mars Express found an ultraviolet glow coming from "magnetic umbrellas" in the Southern Hemisphere. Mars does not have a global magnetic field which guides charged particles entering the atmosphere. Mars has multiple umbrella-shaped magnetic fields mainly in the Southern Hemisphere, which are remnants of a global field that decayed billions of years ago.
A person who has special knowledge or experience; an expert.