Gliese 15 Ab

Last updated
Gliese 15 Ab
Discovery
Discovered by Andrew W. Howard
Discovery site Keck Observatory
Discovery dateAugust, 2014
Radial velocity
Orbital characteristics
0.074±0.001 AU
Eccentricity 0.093+0.152
−0.010
11.441+0.004
−0.002
d
Star Groombridge 34A
Physical characteristics
Mass > 3.03 MEarth [1]

    Gliese 15 Ab (GJ 15 Ab), also commonly called Groombridge 34 Ab, [note 1] rarely called GX Andromedae b is an extrasolar planet approximately 11 light-years away in the constellation of Andromeda. It is found in the night sky orbiting the star Gliese 15 A, which is at right ascension 00h 18m 22.89s and declination +44° 01′ 22.6″. [2]

    Contents

    It was discovered in August 2014, [3] deduced from analysis of the radial velocities of the parent star by the Eta-Earth Survey using HIRES at Keck Observatory. It has around 5.35 ± 0.75 Earth masses, [3] and is thought to be a Super-Earth with a diameter greater than that of the Earth. However, researches using the CARMENES spectrograph failed to detect the planet in 2017. [4] The detection of planet was recovered in 2018, with revised minimum mass of 3.03 MEarth. [1]

    Gliese 15 Ab has a close inner orbit around Gliese 15 A with a semi-major axis of only 0.0717 ± 0.0034 AU, making an orbital period that is just a little longer than 11.4 days, the orbit appears to be relatively circular, with an orbital eccentricity of about 0.12. It orbits too close to Gliese 15 A to be located in the habitable zone and is unlikely to harbour life.

    Notes

    1. In the discovery paper, discoverers call this object "Gl 15 Ab", and never "Groombridge 34 Ab".

    Related Research Articles

    <span class="mw-page-title-main">Gliese 436</span> Star in the constellation Leo

    Gliese 436 is a red dwarf located 31.9 light-years away in the zodiac constellation of Leo. It has an apparent visual magnitude of 10.67, which is much too faint to be seen with the naked eye. However, it can be viewed with even a modest telescope of 2.4 in (6 cm) aperture. In 2004, the existence of an extrasolar planet, Gliese 436 b, was verified as orbiting the star. This planet was later discovered to transit its host star.

    <span class="mw-page-title-main">Groombridge 34</span> Binary star system in the constellation of Andromeda

    Groombridge 34 is a binary star system in the northern constellation of Andromeda. It was listed as entry number 34 in A Catalogue of Circumpolar Stars, published posthumously in 1838 by British astronomer Stephen Groombridge. Based upon parallax measurements taken by the Gaia spacecraft, the system is located about 11.6 light-years from the Sun. This positions the pair among the nearest stars to the Solar System.

    Gliese 581 is a red dwarf star of spectral type M3V at the center of the Gliese 581 planetary system, about 20.5 light years away from Earth in the Libra constellation. Its estimated mass is about a third of that of the Sun, and it is the 101st closest known star system to the Sun. Gliese 581 is one of the oldest, least active M dwarfs known. Its low stellar activity improves the likelihood of its planets retaining significant atmospheres, and lessens the sterilizing impact of stellar flares.

    <span class="mw-page-title-main">Gliese 581b</span> Gas giant orbiting Gliese 581

    Gliese 581b or Gl 581b is an exoplanet orbiting within the Gliese 581 system. It is the first planet discovered of three confirmed in the system so far, and the second in order from the star.

    <span class="mw-page-title-main">Gliese 581d</span> Contested super-Earth orbiting Gliese 581

    Gliese 581d is a doubtful, and frequently disputed, exoplanet candidate orbiting within the Gliese 581 system, approximately 20.4 light-years away in the Libra constellation. It was the third planet claimed in the system and the fourth or fifth in order from the star. Multiple subsequent studies found that the planetary signal in fact originates from stellar activity, and thus the planet does not exist, but this remains disputed.

    Gliese 317 is a small red dwarf star with two exoplanetary companions in the southern constellation of Pyxis. It is located at a distance of 49.6 light-years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of +87.8 km/s. This star is too faint to be viewed with the naked eye, having an apparent visual magnitude of 11.98 and an absolute magnitude of 11.06.

    Gliese 86 is a K-type main-sequence star approximately 35 light-years away in the constellation of Eridanus. It has been confirmed that a white dwarf orbits the primary star. In 1998 the European Southern Observatory announced that an extrasolar planet was orbiting the star.

    Gliese 176 is a small star with an orbiting exoplanet in the constellation of Taurus. With an apparent visual magnitude of 9.95, it is too faint to be visible to the naked eye. It is located at a distance of 30.9 light years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 26.4 km/s.

    Gliese 682 or GJ 682 is a red dwarf. It is listed as the 53rd-nearest known star system to the Sun, being 16.3 light years away from the Earth. Even though it is close by, it is dim with a magnitude of 10.95 and thus requires a telescope to be seen. It is located in the constellation of Scorpius, near the bright star Theta Scorpii. The star is in a crowded region of sky near the Galactic Center, and so appears to be near a number of deep-sky objects from the Solar System's perspective. The star is only 0.5 degrees from the much more distant globular cluster NGC 6388.

    <span class="mw-page-title-main">Gliese 581e</span> Terrestrial planet orbiting Gliese 581

    Gliese 581e or Gl 581e is an exoplanet orbiting within the Gliese 581 system, located approximately 20.4 light-years away from Earth in the Libra constellation. It is the third planet discovered in the system and the first in order from the star.

    Gliese 433 is a dim red dwarf star with multiple exoplanetary companions, located in the equatorial constellation of Hydra. The system is located at a distance of 29.6 light-years from the Sun based on parallax measurements, and it is receding with a radial velocity of +18 km/s. Based on its motion through space, this is an old disk star. It is too faint to be viewed with the naked eye, having an apparent visual magnitude of 9.81 and an absolute magnitude of 10.07.

    Gliese 251, also known as HIP 33226 or HD 265866, is a star located about 18 light years away from the Solar System. Located in the constellation of Gemini, it is the nearest star in this constellation. It is located near the boundary with Auriga, 49 arcminutes away from the bright star Theta Geminorum; due to its apparent magnitude of +9.89 it cannot be observed with the naked eye. The closest star to Gliese 251 is QY Aurigae, which is located 3.5 light years away.

    <span class="mw-page-title-main">Gliese 555</span> Star in the constellation Libra

    Gliese 555 is a small star with one or more orbiting exoplanets in the constellation Libra. It has the variable star designation HN Librae, abbreviated HM Lib. With an apparent visual magnitude of 11.32, it can only be viewed through a telescope. The system is located at a distance of 20.4 light years based on parallax measurements, but is drifting closer to the Sun with a radial velocity of −1.4 km/s. It does not appear to belong to any known stellar moving group or association.

    <span class="mw-page-title-main">GJ 1151</span> Red dwarf star

    GJ 1151 is a star located in the northern circumpolar constellation of Ursa Major at a distance of 26.2 light-years from the Sun. It has a reddish hue and is too faint to be visible to the naked eye with an apparent visual magnitude of 14.0 The star is moving closer with a radial velocity of −36 km/s, and has a relatively large proper motion, traversing the celestial sphere at a rate of 1.815″·yr−1.

    Gliese 536 b also known as GJ 536 b is a nearby Super-Earth sized exoplanet orbiting interior to the circumstellar habitable zone of the red dwarf (M1) star Gliese 536 every 8.7 days. Due to its short orbital period it could help with future studies of biological activity on exoplanets.

    <span class="mw-page-title-main">Teegarden's Star b</span> Goldilocks terrestrial exoplanet orbiting Teegardens Star

    Teegarden's Star b is an exoplanet found orbiting within the habitable zone of Teegarden's Star, an M-type red dwarf 12.5 light years away from the Solar System. It has the highest Earth Similarity Index of any exoplanet found to-date. Along with Teegarden's Star c, it is among the closest known potentially habitable exoplanets.

    <span class="mw-page-title-main">Gliese 15 Ac</span> Subjovian planet orbiting Gliese 15 A

    Gliese 15 Ac is an exoplanet orbiting the nearby red dwarf star Gliese 15 A, which is part of a binary star system located about 11.6 light-years from the Sun. The planet was first proposed in October 2017 using radial velocity data from the CARMENES spectrograph, combined with measurements from the HARPS and HIRES spectrographs, and its existence was confirmed in April 2018 using HARPS-N data. It has a minimum mass 36 times that of Earth and orbits at around 5.4 astronomical units with a period of 7,600 days, an orbit which may have been sculpted by interaction with the companion star, Gliese 15 B. As of 2020, Gliese 15 Ac is the longest-period sub-Jovian planet discovered by radial velocity.

    References

    1. 1 2 Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics. 617: A104. arXiv: 1804.03476 . Bibcode:2018A&A...617A.104P. doi:10.1051/0004-6361/201732535. S2CID   54990041.
    2. F. van Leeuwen (2007) Validation of the new Hipparcos reduction. Astronomy and Astrophysics 474 (2): 653–664.
    3. 1 2 Andrew Howard, Geoffrey Marcy, Debra A. Fischer, Howard Isaacson, Philip S. Muirhead, Gregory W. Henry, Tabetha S. Boyajian, Kaspar von Braun, Juliette C. Becker, Jason T. Wright, John Asher Johnson, Astrophysics Earth and Planetary Astrophysics : The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth.
    4. Trifonov, Trifon; Kürster, Martin; Zechmeister, Mathias; Tal-Or, Lev; Caballero, José A.; Quirrenbach, Andreas; Amado, Pedro J.; Ribas, Ignasi; Reiners, Ansgar; et al. (2018). "The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems". Astronomy and Astrophysics. 609. A117. arXiv: 1710.01595 . Bibcode:2018A&A...609A.117T. doi:10.1051/0004-6361/201731442. S2CID   119340839.