Ross 128 b

Last updated
Ross 128 b
Artist's impression of the planet Ross 128 b.jpg
Artist's impression of the planet Ross 128 b, with the star Ross 128 in the background.
Discovery [1]
Discovered by Xavier Bonfils
Discovery dateNovember 15, 2017
Radial velocity
Orbital characteristics [2]
0.049640±0.000004  AU
Eccentricity 0.21+0.09
−0.10
9.8556+0.0012
−0.0011
  d
Semi-amplitude 1.41±0.14  m/s
Star Ross 128
Physical characteristics
1.6+1.1
−0.65
  R🜨
(predicted) [3]
Mass ≥1.40±0.13  M🜨 ; [2]
1.8+0.56
−0.43
  M🜨
(predicted) [3]
Temperature 213–301 K (−60–28 °C; −76–82 °F) (equilibrium) [1]

    Ross 128 b is a confirmed Earth-sized exoplanet, likely rocky, that is orbiting near the inner edge of the habitable zone of the red dwarf star Ross 128, at a distance of 11.007 light-years (3.375 parsecs ) from Earth in the constellation of Virgo. [4] The exoplanet was found using a decade's worth of radial velocity data using the European Southern Observatory's HARPS spectrograph (High Accuracy Radial velocity Planet Searcher) at the La Silla Observatory in Chile. Ross 128 b is the nearest exoplanet around a quiet red dwarf, and is considered one of the best candidates for habitability. The planet is only 35% more massive than Earth, receives only 38% more starlight, and is expected to be a temperature suitable for liquid water to exist on the surface, if it has an atmosphere. [1]

    Contents

    The planet does not transit its host star, which makes atmospheric characterization very difficult, but this may be possible with the construction of larger telescopes like the James Webb Space Telescope. [1]

    Physical characteristics

    Mass, radius, and temperature

    Due to it being discovered by the radial velocity method, [5] the only known physical parameter for Ross 128 b is its minimum possible mass. The planet is at least 1.35 ME, or 1.35 times the mass of Earth (about 8.06×1024 kg). This is slightly more massive than the similar and nearby Proxima Centauri b, with a minimum mass of 1.27 ME. The low mass of Ross 128 b implies that it is most likely a rocky Earth-sized planet with a solid surface. However, its radius, and therefore its density, is not known as no transits of this planet have been observed. Ross 128 b would be 0.5 R🜨 (Earth radii) for a pure-iron composition and 3.0 R🜨 for a pure hydrogen-helium composition, both implausible extremes. For a more plausible Earth-like composition, the planet would need to be about 1.10 R🜨 - i.e., 1.1 times the radius of Earth (approximately 7008 km). With that radius, Ross 128 b would be slightly denser than Earth, due to how a rocky planet would become more compact as it increases in size. It would give the planet a gravitational pull around 10.945 m/s2, or about 1.12 times that of Earth. [1]

    A 2019 study predicts a true mass about 1.8 times that of Earth and a radius about 1.6 times that of Earth, with large margins of error. [3]

    Ross 128 b is calculated to have a temperature similar to that of Earth and potentially conducive to the development of life. [5] The discovery team modelled the planet's potential equilibrium temperature using albedos of 0.100, 0.367, and 0.750. Albedo is the portion of the light that is reflected instead of absorbed by a celestial object. With these three albedo parameters, Ross 128 b would have a Teq of either 294 K (21 °C; 70 °F), 269 K (−4 °C; 25 °F), or 213 K (−60 °C; −76 °F). For an Earth-like albedo of 0.3, the planet would have an equilibrium temperature of 280 K (7 °C; 44 °F), about 8 Kelvins lower than Earth's average temperature. [5] The actual temperature of Ross 128 b depends on yet-unknown atmospheric parameters, if it has an atmosphere. [1]

    Host star

    Artist's impression of Ross 128 b along with its red dwarf parent star

    Ross 128 b orbits the small red dwarf star known as Ross 128. The star is 17% the mass and 20% the radius of that of the Sun. It has a temperature of 3192 K, a luminosity of 0.00362  L, and an age of 9.45±0.60  billion years . For comparison, the Sun has a temperature of 5772 K and age of 4.5  billion years , making Ross 128 half the temperature and over twice the age. The star is only 11.03 light-years away, making it one of the 20 closest stars known.

    In 2018, astronomers, based on near-infrared, high-resolution spectra (APOGEE Spectra), determined the chemical abundances of several elements (C, O, Mg, Al, K, Ca, Ti, and Fe) present in Ross 128, finding that the star has near solar metallicity. [6] [7]

    Orbit

    Ross 128 b is a closely orbiting planet, with a year (orbital period) lasting about 9.9 days. [1] [5] Its semi-major axis is 0.0496  AU (7.42 million km). According to some models of the planet's orbit, its orbit is quite circular, with an eccentricity of around 0.03, but also with a large error range as well. However, if all the orbital models are brought together then the eccentricity is higher at about 0.116, and again this is subject to a large error range. Compared to the Earth's average distance from the Sun of 149 million km, Ross 128 b orbits 20 times closer. At that close distance from its host star, the planet is most likely tidally locked, meaning that one side of the planet would have eternal daylight and the other would be in darkness. [8] [9]

    A 2024 study of the radial velocity data found an eccentricity of about 0.21 for Ross 128 b, higher than previous estimates and similar to that of Mercury. Given the planet's orbit near the inner edge of the habitable zone, such a high eccentricity would significantly decrease its potential for habitability. [2]

    Habitability

    Stellar flux properties

    Ross 128 b is not confirmed to be orbiting exactly within the habitable zone. It appears to reside within the inner edge, as it receives approximately 38% more sunlight than Earth. The habitable zone is defined as the region around a star where temperatures are just right for a planet with a thick enough atmosphere to support liquid water, a key ingredient in the development of life as we know it. With its moderately high stellar flux, Ross 128 b is likely more prone to water loss, mainly on the side directly facing the star. However, an Earth-like atmosphere, assuming one exists, would be able to distribute the energy received from the star around the planet and allow more areas to potentially hold liquid water. [10] In addition, study author Xavier Bonfils noted the possibility of significant cloud cover on the star-facing side, which would block out much incoming stellar energy and help keep the planet cool.

    Solar flare potential

    The planet is considered one of the most Earth-like worlds ever found in relation to its temperature, size and rather quiet host star. [5] Ross 128 b is very close in mass to Earth, only about 35% more massive, and is likely around 10% larger in radius. Gravity on the planet would be only slightly higher. Also, its host star Ross 128 is an evolved star with a stable stellar activity. [5] Many red dwarfs like Proxima Centauri and TRAPPIST-1 are prone to releasing potentially deadly flares caused by powerful magnetic fields. Billions of years of exposure to these flares can potentially strip a planet of its atmosphere and render it sterile with possibly dangerous amounts of radiation. While Ross 128 is known to produce such flares, they are currently much less common and less powerful than those of the previously mentioned stars.

    Atmospheric potential

    As of 2017, it is not yet possible to determine if Ross 128 b has an atmosphere because it does not transit the star. [5] However, the James Webb Space Telescope and upcoming massive ground-based telescopes, like the Thirty Meter Telescope and the European Extremely Large Telescope, could analyze the atmosphere of Ross 128 b if it has an atmosphere without the need of transit. This would enable scientists to find biosignatures in the planet's atmosphere, which are chemicals like oxygen, ozone, and methane that are created by known biological processes.

    See also

    Related Research Articles

    <span class="mw-page-title-main">Ross 128</span> Small star in constellation of Virgo

    Ross 128 is a red dwarf star in the equatorial zodiac constellation of Virgo, near β Virginis. The apparent magnitude of Ross 128 is 11.13, which is too faint to be seen with the unaided eye. Based upon parallax measurements, the distance of this star from Earth is 11.007 light-years, making it the twelfth closest stellar system to the Solar System. It was first cataloged in 1926 by American astronomer Frank Elmore Ross.

    <span class="mw-page-title-main">Super-Earth</span> Type of exoplanet

    A Super-Earth or super-terran is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 24 July 2024, there are 7,026 confirmed exoplanets in 4,949 planetary systems, with 1007 systems having more than one planet. This is a list of the most notable discoveries.

    <span class="mw-page-title-main">Kepler-186f</span> Terrestrial exoplanet orbiting Kepler-186

    Kepler-186f is an Earth-sized exoplanet orbiting within the habitable zone of the red dwarf star Kepler-186, the outermost of five such planets discovered around the star by NASA's Kepler space telescope. It is located about 580 light-years from Earth in the constellation of Cygnus.

    <span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

    Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

    Kepler-296e is a confirmed super-Earth exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014.

    <span class="mw-page-title-main">TRAPPIST-1d</span> Small Venus-like exoplanet orbiting TRAPPIST-1

    TRAPPIST-1d is a small exoplanet, which orbits on the inner edge of the habitable zone of the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method. The first signs of the planet were announced in 2016, but it was not until the following years that more information concerning the probable nature of the planet was obtained. TRAPPIST-1d is the second-least massive planet of the system and is likely to have a compact hydrogen-poor atmosphere similar to Venus, Earth, or Mars. It receives just 4.3% more sunlight than Earth, placing it on the inner edge of the habitable zone. It has about <5% of its mass as a volatile layer, which could consist of atmosphere, oceans, and/or ice layers. A 2018 study by the University of Washington concluded that TRAPPIST-1d might be a Venus-like exoplanet with an uninhabitable atmosphere. The planet is an eyeball planet candidate.

    <span class="mw-page-title-main">TRAPPIST-1b</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1b is a mainly rocky exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The planet was detected using the transit method, where a planet dims the host star's light as it passes in front of it. It was first announced on May 2, 2016, and later studies were able to refine its physical parameters.

    <span class="mw-page-title-main">TRAPPIST-1f</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1f, also designated as 2MASS J23062928-0502285 f, is an exoplanet, likely rocky, orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1g</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1g, also designated as 2MASS J23062928-0502285 g and K2-112 g, is an exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It was one of four new exoplanets to be discovered orbiting the star in 2017 using observations from the Spitzer Space Telescope. The exoplanet is within the optimistic habitable zone of its host star. It was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1e</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1e, also designated as 2MASS J23062928-0502285 e, is a rocky, close-to-Earth-sized exoplanet orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. Astronomers used the transit method to find the exoplanet, a method that measures the dimming of a star when a planet crosses in front of it.

    <span class="mw-page-title-main">LHS 1140 b</span> Super-Earth orbiting LHS 1140

    LHS 1140 b is an exoplanet orbiting within the conservative habitable zone of the red dwarf LHS 1140. Discovered in 2017 by the MEarth Project, LHS 1140 b is about 5.6 times the mass of Earth and about 70% larger in radius, putting it within the super-Earth category of planets. It was initially thought to be a dense rocky planet, but refined measurements of its mass and radius have found a lower density, indicating that it is likely an ocean world with 9-19% of its mass composed of water. LHS 1140 b orbits entirely within the star's habitable zone and gets 43% the incident flux of Earth. The planet is 49 light-years away and transits its star, making it an excellent candidate for atmospheric studies with ground-based and/or space telescopes.

    Luyten b is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the nearby red dwarf Luyten's Star. It is the fourth-closest potentially habitable exoplanet known, at a distance of 12 light-years. Only Proxima Centauri b, Ross 128 b, and GJ 1061 d are closer. Discovered alongside Gliese 273c in June 2017, Luyten b is a super-Earth of around 2.89 times the mass of Earth and receives only 6% more starlight than Earth, making it one of the best candidates for habitability.

    <span class="mw-page-title-main">K2-288Bb</span> Mini-Neptune orbiting K2-288B

    K2-288Bb is a super-Earth or mini-Neptune exoplanet orbiting in the habitable zone of K2-288B, a low-mass M-dwarf star in a binary star system in the constellation of Taurus about 226 light-years from Earth. It was discovered by citizen scientists while analysing data from the Kepler space telescope's K2 mission, and was announced on 7 January 2019. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program, after the six planets of K2-138 and the three planets of K2-233.

    Teegarden's Star c is an exoplanet found orbiting in the habitable zone of Teegarden's Star, an M-type red dwarf star 12.5 light years away from the Solar System. It orbits in the conservative habitable zone around its star. Along with Teegarden's Star b, it is among the closest known potentially habitable exoplanets. It was discovered in June 2019.

    <span class="mw-page-title-main">TOI-700 d</span> Goldilocks terrestrial planet orbiting TOI-700

    TOI-700 d is a near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf TOI-700, the outermost planet within the system. It is located roughly 101.4 light-years (31.1 pc) away from Earth in the constellation of Dorado. The exoplanet is the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

    <span class="mw-page-title-main">Kepler-1649c</span> Earth-size exoplanet orbiting Kepler-1649

    Kepler-1649c is an Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star Kepler-1649, the outermost planet of the planetary system discovered by Kepler’s space telescope. It is located about 301 light-years (92 pc) away from Earth, in the constellation of Cygnus.

    Kepler-737b is a super-Earth exoplanet 669 light years away. There is a chance it could be on the inner edge of the habitable zone.

    References

    1. 1 2 3 4 5 6 7 Bonfils, Xavier (2017). "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". Astronomy and Astrophysics . 613: A25. arXiv: 1711.06177 . Bibcode:2018A&A...613A..25B. doi:10.1051/0004-6361/201731973. S2CID   37148632.
    2. 1 2 3 Liebing, F.; Jeffers, S. V.; et al. (September 2024). "RedDots: Limits on habitable and undetected planets orbiting nearby stars GJ 832, GJ 674, and Ross 128". Astronomy & Astrophysics . arXiv: 2409.01173 .
    3. 1 2 3 Tasker, Elizabeth J.; Laneuville, Matthieu; Guttenberg, Nicholas (7 January 2020). "Estimating Planetary Mass with Deep Learning". The Astronomical Journal. 159 (2): 41. arXiv: 1911.11035 . Bibcode:2020AJ....159...41T. doi: 10.3847/1538-3881/ab5b9e . ISSN   1538-3881. S2CID   208267900.
    4. Newfound Earth-like exoplanet a good spot to hunt for aliens. Eric Mack, CBS News. 15 November 2017.
    5. 1 2 3 4 5 6 7 A potentially habitable planet has been discovered just 11 light-years away Archived 2018-02-21 at the Wayback Machine . John Wenz, Astronomy Magazine. 15 November 2017.
    6. Suoto, Diogo; et al. (13 June 2018). "Stellar and Planetary Characterization of the Ross 128 Exoplanetary System from APOGEE Spectra". The Astrophysical Journal Letters . 860 (1): L15. arXiv: 1805.11633 . Bibcode:2018ApJ...860L..15S. doi: 10.3847/2041-8213/aac896 . S2CID   89612773.
    7. Staff (10 July 2018). "Rocky planet neighbor looks familiar, but is not Earth's twin - Detailed chemical abundances of the Ross 128 help us understand its exoplanet Ross 128 b". Eurekalert! . Retrieved 11 July 2018.
    8. Nearby Earth-sized Alien World Orbits 'Quiet' Star, Boosting Habitable Potential. Ian O'Neill, How Stuff Works. 15 November 2017. Quote: "Tidal lock[ing] is expected for Ross 128 b," says Nicola Astudillo-Defra, who works at the Geneva Observatory, University of Geneva in Switzerland, and is co-author of the study.
    9. Ross 128. Sol Station. November 2017.
    10. Newly discovered nearby planet could support life. Ashley Strickland, CNN News. 15 November 2017.