Abell 1835 IR1916

Last updated
Abell 1835 IR1916
Abell 1835 Hubble.jpg
The galaxy cluster Abell 1835 behind which the galaxy Abell 1835 IR1916 was discovered
Observation data (J2000 epoch)
Constellation Virgo
Right ascension 14h 01m 00.0s
Declination +02° 52 44
Redshift 10.0
Distance 13.2 billion light-years (4.04 Gpc)
Characteristics
Mass 1.0×109  M
Other designations
PSR2004 1916

Abell 1835 IR1916 (also known as Abell 1835, Galaxy Abell 1835, Galaxy Abell 1835 IR1916, or simply The Abell) was a candidate for being the most distant galaxy ever observed, although that claim has not been verified by additional observations. It was claimed to lie behind the galaxy cluster Abell 1835, in the Virgo constellation.

Contents

Initial observation

Abell 1835 was discovered by French and Swiss astronomers of the European Southern Observatory, namely Roser Pelló, Johan Richard, Jean-François Le Borgne, Daniel Schaerer, and Jean-Paul Kneib. The astronomers used a near-infrared instrument on the Very Large Telescope to detect the galaxy; other observatories were then used to make an image of it possible. The Observatory, in conjunction with the Swiss National Science Foundation, the French Centre National de la Recherche Scientifique, and the journal Astronomy and Astrophysics , issued a press release on 1 March 2004 announcing the discovery. It was believed to be more distant than the galaxy lensed by Abell 2218.

Age and distance

The initial observer's analysis of J-band observations indicated that Abell 1835 IR1916 has a redshift factor of z~10.0, meaning that it appears to us as it was about 13.2 billion years ago, only 470 million years after the Big Bang and very close to the first burst of star formation in the universe. Its visibility at such a great distance was credited to gravitational lensing by the galaxy cluster Abell 1835 between it and us.

Further analysis of the data that led to the first announcement has cast doubt on the claim that it is a distant object, [1] and follow-up observations in the H-band using the Gemini North Telescope [2] and observations from the orbiting Spitzer Space Telescope [3] were not able to detect it at all, the latter regarding it to be an artefact.

See also

Notes

  1. Weatherley et al. (2004)
  2. Bremer et al. (2004)
  3. Smith et al. (2006)

Related Research Articles

<span class="mw-page-title-main">Supercluster</span> Large group of smaller galaxy clusters or galaxy groups

A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group, which in turn is part of the Virgo Supercluster, which is part of the Laniakea Supercluster, which is part of the Pisces–Cetus Supercluster Complex. The large size and low density of superclusters means that they, unlike clusters, expand with the Hubble expansion. The number of superclusters in the observable universe is estimated to be 10 million.

<span class="mw-page-title-main">Abell 2218</span> Galaxy cluster in the constellation Draco

Abell 2218 is a large cluster of galaxies over 2 billion light-years away in the constellation Draco.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">Giant Metrewave Radio Telescope</span> Radio telescope center

The Giant Metrewave Radio Telescope (GMRT), located near Narayangaon, Pune in India, is an array of thirty fully steerable parabolic radio telescopes of 45 metre diameter, observing at metre wavelengths. It is the largest and most sensitive radio telescope array in the world at low frequencies. It is operated by the National Centre for Radio Astrophysics (NCRA), a part of the Tata Institute of Fundamental Research, Mumbai. It was conceived and built under the direction of Govind Swarup during 1984 to 1996. It is an interferometric array with baselines of up to 25 kilometres (16 mi). It was recently upgraded with new receivers, after which it is also known as the upgraded Giant Metrewave Radio Telescope (uGMRT).

<span class="mw-page-title-main">Coma Cluster</span> Cluster of galaxies in the constellation Coma Berenices

The Coma Cluster is a large cluster of galaxies that contains over 1,000 identified galaxies. Along with the Leo Cluster, it is one of the two major clusters comprising the Coma Supercluster. It is located in and takes its name from the constellation Coma Berenices.

<span class="mw-page-title-main">Abell 2667</span> Galaxy cluster in the constellation Sculptor

Abell 2667 is a galaxy cluster. It is one of the most luminous galaxy clusters in the X-ray waveband known at a redshift about 0.2.

<span class="mw-page-title-main">IOK-1</span> Galaxy in constellation Coma Berenices

IOK-1 is a distant galaxy in the constellation Coma Berenices. When discovered in 2006, it was the oldest and most distant galaxy ever found, at redshift 6.96.

<span class="mw-page-title-main">APM 08279+5255</span> Quasar

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

<span class="mw-page-title-main">Comet Galaxy</span> Spiral galaxy in the constellation Sculptor

The Comet Galaxy, a spiral galaxy located 3.2 billion light-years from Earth, in the galaxy cluster Abell 2667, was found with the Hubble Space Telescope. This galaxy has slightly more mass than our Milky Way. It was detected on 2 March 2007.

<span class="mw-page-title-main">HCM-6A</span> Galaxy in the constellation Cetus

HCM-6A is an LAE galaxy that was found in 2002 by Esther Hu and Lennox Cowie from the University of Hawaii and Richard McMahon from the University of Cambridge, using the Keck II Telescope in Hawaii. HCM-6A is located behind the Abell 370 galactic cluster, near M77 in the constellation Cetus, which enabled the astronomers to use Abell 370 as a gravitational lens to get a clearer image of the object.

<span class="mw-page-title-main">AMiBA</span> Radio telescope on Mauna Loa, Hawaii

The Yuan-Tseh Lee Array for Microwave Background Anisotropy, also known as the Array for Microwave Background Anisotropy (AMiBA), is a radio telescope designed to observe the cosmic microwave background and the Sunyaev-Zel'dovich effect in clusters of galaxies.

<span class="mw-page-title-main">Abell 383</span> Galaxy cluster in the constellation Eridanus

Abell 383 is a galaxy cluster in the Abell catalogue.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">Cosmos Redshift 7</span> Galaxy in the constellation Sextans

Cosmos Redshift 7 is a high-redshift Lyman-alpha emitter galaxy. At a redshift z = 6.6, the galaxy is observed as it was about 800 million years after the Big Bang, during the epoch of reionisation. With a light travel time of 12.9 billion years, it is one of the oldest, most distant galaxies known.

<span class="mw-page-title-main">Georges Meylan</span> Swiss astronomer

Georges Meylan is a Swiss astronomer, born on July 31, 1950, in Lausanne, Switzerland. He was the director of the Laboratory of Astrophysics of the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland, and now a professor emeritus of astrophysics and cosmology at EPFL. He is still active in both research and teaching.

<span class="mw-page-title-main">Peter Capak</span> Physicist

Peter Lawrence Capak is currently the Architect of Perception Systems at the Oculus division of Facebook. His current focus is developing machine perception technologies, sensors, displays, and compute architectures for the next generation of augmented (AR), mixed (MR) and virtual reality (VR) systems. His research has focused on using physical modeling and advanced statistical methods including artificial intelligence and machine learning to extract information from very large multi-wavelength (hyper-spectral) data sets. He has primarily used this to study structure formation in the universe, cosmology, and the nature of dark matter and dark energy.

References