WASP-54

Last updated
WASP-54
Observation data
Epoch J2000       Equinox J2000
Constellation Virgo
Right ascension 13h 41m 49.0302s [1]
Declination −00° 07 41.0337 [1]
Apparent magnitude  (V)10.41
Characteristics
Evolutionary stage Main sequence
Spectral type F8 [2]
Astrometry
Radial velocity (Rv)-2.82 [1]  km/s
Proper motion (μ)RA: -24.685 [1]   mas/yr
Dec.: -4.687 [1]   mas/yr
Parallax (π)3.9522 ± 0.0692 [1]   mas
Distance 830 ± 10  ly
(253 ± 4  pc)
Orbit [3]
PrimaryWASP-54A
CompanionWASP-54B
Semi-major axis (a)5.728±0.006"
(1450 AU)
Details [4]
WASP-54A
Mass 1.213±0.032  M
Radius 1.828+0.091
0.081
  R
Surface gravity (log g)4.00±0.02 [5]   cgs
Temperature 6100±100  K
Metallicity [Fe/H]-0.27±0.08  dex
Rotational velocity (v sin i)4.0±0.8 km/s
Age 6.9+1.0
1.9
  Gyr
WASP-54B
Mass 0.19±0.01 [3]   M
Temperature 3216+26
25
[3]   K
Other designations
BD+00 3088, Gaia DR2  3661983850663908608, TYC  4967-678-1, GSC  04967-00678, 2MASS J13414903-0007410 [2]
Database references
SIMBAD data

WASP-54, also known as BD+00 3088, is a binary star system about 825 light-years away. The primary, WASP-54A, is a F-type main-sequence star, accompanied by the red dwarf WASP-54B on a wide orbit. WASP-54 is depleted in heavy elements, having 55% of the solar abundance of iron. [4] The age of WASP-54 is slightly older than the Sun's at 6.9+1.0
1.9
billion years. [4]

A multiplicity survey in 2017 did detect a red dwarf stellar companion WASP-54B 5.7″ away from WASP-54A. [6] The companion was proven to be co-moving in 2020. [3]

Planetary system

In 2012 a transiting hot Jupiter planet b was detected on a tight, mildly eccentric [4] orbit around WASP-54A. [7]

Planetary equilibrium temperature is 1742+49
−69
  K
. [7]

The WASP-54 planetary system [4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.606±0.018  MJ 0.04988+0.00043
0.00045
3.6936411±0.0000059<0.0684.97±0.61° 1.653+0.090
0.083
  RJ

Related Research Articles

WASP-5 is a magnitude 12 yellow dwarf star located about 910 light-years away in the Phoenix constellation. The star is likely older than Sun, slightly enriched in heavy elements and is rotating rapidly, being spun up by the tides raised by the giant planet on the close orbit.

WASP-56 is a sun-like star of spectral type G6 in the constellation of Coma Berenices. It has an apparent magnitude of 11.48. Observations at the Calar Alto Observatory using the lucky imaging technique detected a candidate companion star located 3.4 arc seconds away, however it is not known if this is an actual binary companion or an optical double.

WASP-21 Star in the constellation Pegasus

WASP-21 is a G-type star that is reaching the end of its main sequence lifetime approximately 850 light years from Earth in the constellation of Pegasus that is relatively metal-poor, having 40% of heavy elements compared to the Sun. Kinematically, WASP-21 belongs to the thick disk of the Milky Way.

WASP-48 is a subgiant star about 1400 light-years away. The star is likely older than Sun and slightly depleted in heavy elements. It shows an infrared excess noise of unknown origin, yet has no detectable ultraviolet emissions associated with the starspot activity. The discrepancy may be due to large interstellar absorption of light in interstellar medium for WASP-48. The measurements are compounded by the emission from eclipsing contact binary NSVS-3071474 projected on sky plane nearby, although no true stellar companions were detected by survey in 2015.

WASP-35 is a G-type main-sequence star about 660 light-years away. The star's age cannot be well constrained, but it is probably older than the Sun. WASP-35 is similar in concentration of heavy elements compared to the Sun.

HAT-P-30, also known as WASP-51, is the primary of a binary star system about 700 light-years away. It is a G-type main-sequence star. The star’s age is much younger than the Sun. HAT-P-30 has a similar concentration of heavy elements compared to the Sun.

BD-07 436, also known as WASP-77 since 2012, is a binary star system about 344 light-years away. The star's components appears to have a different age, with the secondary older than 9 billion years, while the primary's age is 5 billion years. The BD-07 436 system's concentration of heavy elements is similar to the Sun. Its stars display moderate chromospheric activity, including x-ray flares.

BD+00 316, also known as WASP-71 since 2019, is an F-class main sequence star about 1200 light-years away. The star is younger than the Sun at approximately 3.6 billion years, yet is already close to leaving the main sequence. BD+00 316 is enriched in heavy elements, having 140% of the solar abundance of iron.

WASP-64 is a star about 1200 light-years away. It is a G7 class main-sequence star, orbited by a planet WASP-64b. It is younger than the Sun at 3.6±1.6 billion years, and it has a metal abundance similar to the Sun. The star is rotating rapidly, being spun up by the giant planet in a close orbit.

WASP-67 is a K-type main-sequence star about 620 light-years away. The stars age is poorly constrained, but is likely older than the Sun`s at approximately 8.7+5.5
−8.6
billion years. WASP-67 is slightly depleted in heavy elements, having 85% of the solar abundance of iron.

WASP-59 is a K-type main-sequence star about 379 light-years away. The star's age is essentially unconstrained by observations. WASP-59 is slightly depleted in heavy elements, having 70% of the solar abundance of iron. The star produces extremely low levels of ultraviolet light, indicating an absence of flare activity.

WASP-58 is a binary star system comprising a G-type main-sequence star and a red dwarf about 955 light-years away. WASP-58 is slightly depleted in heavy elements, having 80% of the solar abundance of iron. WASP-58 is much older than the Sun at 12.80+0.20
−2.10
billion years.

WASP-52 is a K-type main-sequence star about 570 light-years away. It is older than the Sun at 10.7+1.9
−4.5
billion years, but it has a similar fraction of heavy elements. The star has prominent starspot activity, with 3% to 14% of the stellar surface covered by areas 575±150 K cooler than the rest of the photosphere.

WASP-42 is a K-type main-sequence star. Its surface temperature is 5315±79 K. WASP-42 is similar to the Sun in concentration of heavy elements, with metallicity ([Fe/H]) of 0.05±0.13, and is much older than the Sun at 11.3+1.5
−4.8
billion years. The star does exhibit starspot activity as is typical for its spectral class.

WASP-41 is a G-type main-sequence star. Its surface temperature is 5450±150 K. WASP-41 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of −0.080±0.090, but is much younger at an age of 2.289±0.077 billion years. The star does exhibit strong starspot activity, with spots covering 3% of the stellar surface.

WASP-69 is a K-type main-sequence star. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01, and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.

WASP-75 is a F-type main-sequence star about 980 light-years away. The star is much younger than the Sun at approximately 2.9±0.2 billion years. WASP-75 is similar to the Sun in its concentration of heavy elements.

WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04, and is younger at an age of 3.0±1.3 billion years.

BD+02 2056, also known as WASP-84 is a G-type main-sequence star. Its surface temperature is 5350±31 K, and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen. BD+02 2056's age is probably older than the Sun at 8.5+4.1
−5.5
billion years. The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.

References

  1. 1 2 3 4 5 6 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 "BD+00 3088". SIMBAD . Centre de données astronomiques de Strasbourg.
  3. 1 2 3 4 Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv: 2001.08224 , doi:10.1051/0004-6361/201937127, S2CID   210861118
  4. 1 2 3 4 5 Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv: 1704.00373 , doi:10.1051/0004-6361/201629882, S2CID   118923163
  5. Correcting the spectroscopic surface gravity using transits and asteroseismology No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium
  6. Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; d'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; et al. (2017), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016", Astronomy & Astrophysics, 610: A20, arXiv: 1709.07476 , doi:10.1051/0004-6361/201731855
  7. 1 2 Faedi, F.; Pollacco, D.; Barros, S. C. C.; Brown, D.; Collier Cameron, A.; Doyle, A. P.; Enoch, R.; Gillon, M.; Gómez Maqueo Chew, Y.; Hébrard, G.; Lendl, M.; Liebig, C.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Wheatley, P. J.; Alsubai, K. A.; Anderson, D. R.; Armstrong, D.; Bento, J.; Bochinski, J.; Bouchy, F.; Busuttil, R.; Fossati, L.; Fumel, A.; Haswell, C. A.; Hellier, C.; Holmes, S.; Jehin, E.; et al. (2012), "WASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP", Astronomy & Astrophysics, 551: A73, arXiv: 1210.2329 , doi:10.1051/0004-6361/201220520, S2CID   14346225

Coordinates: Jupiter and moon.png 13h 41m 49.0302s, −00° 07′ 41.0337″