Part of a series on |

Astrodynamics |
---|

Orbital parameters |

Gravitational influences |

Preflight engineering |

Efficiency measures |

The **orbital period** is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

- Related periods
- Small body orbiting a central body
- Effect of central body's density
- Two bodies orbiting each other
- Synodic period 2
- Examples of sidereal and synodic periods
- Synodic periods relative to other planets
- Binary stars
- See also
- Notes
- Bibliography
- External links

For objects in the Solar System, this is often referred to as the **sidereal period**, determined by a 360° revolution of one celestial body around another, e.g. the Earth orbiting the Sun. The term *sidereal* denotes that the object returns to the same position relative to the fixed stars projected in the sky. When describing orbits of binary stars, the orbital period is usually referred to as just the **period**. For example, Jupiter has a sidereal period of 11.86 years while the main binary star Alpha Centauri AB has a period of about 79.91 years.

Another important orbital period definition can refer to the repeated cycles for celestial bodies as observed from the Earth's surface. An example is the so-called **synodic period**, applying to the elapsed time where planets return to the same kind of phenomena or location, such as when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months.

Periods in astronomy are conveniently expressed in various units of time, often in hours, days, or years. They can be also defined under different specific astronomical definitions that are mostly caused by small complex external gravitational influences by other celestial objects. Such variations also include the true placement of the centre of gravity between two astronomical bodies (barycenter), perturbations by other planets or bodies, orbital resonance, general relativity, etc. Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry.

There are many periods related to the orbits of objects, each of which are often used in the various fields of astronomy and astrophysics. Examples of some of the common ones include the following:

- The
**sidereal period**is the amount of time that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference. - The
**synodic period**is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects. In common usage, these two objects are typically the Earth and the Sun. The time between two successive oppositions or two successive conjunctions is also equal to the synodic period. For celestial bodies in the solar system, the synodic period (with respect to Earth and the Sun) differs from the sidereal period due to the Earth's motion around the Sun. For example, the synodic period of the Moon's orbit as seen from the Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around the Earth, which is 27.3 mean solar days, due to the motion of the Earth around the Sun. - The
**draconitic period**(also**draconic period**or**nodal period**), is the time that elapses between two passages of the object through its ascending node, the point of its orbit where it crosses the ecliptic from the southern to the northern hemisphere. This period differs from the sidereal period because both the orbital plane of the object and the plane of the ecliptic precess with respect to the fixed stars, so their intersection, the line of nodes, also precesses with respect to the fixed stars. Although the plane of the ecliptic is often held fixed at the position it occupied at a specific epoch, the orbital plane of the object still precesses causing the draconitic period to differ from the sidereal period.^{ [1] } - The
**anomalistic period**is the time that elapses between two passages of an object at its periapsis (in the case of the planets in the Solar System, called the perihelion), the point of its closest approach to the attracting body. It differs from the sidereal period because the object's semi-major axis typically advances slowly. - Also, the
**tropical period**of Earth (a tropical year) is the interval between two alignments of its rotational axis with the Sun, also viewed as two passages of the object at a right ascension of 0 hr. One Earth year is slightly shorter than the period for the Sun to complete one circuit along the ecliptic (a sidereal year) because the inclined axis and equatorial plane slowly precess (rotate with respect to reference stars), realigning with the Sun before the orbit completes. This cycle of axial precession for Earth, known as*precession of the equinoxes*, recurs roughly every 25,770 years.^{[ citation needed ]}

According to Kepler's Third Law, the **orbital period***T* (in seconds) of two point masses orbiting each other in a circular or elliptic orbit is:^{ [2] }

where:

*a*is the orbit's semi-major axis*μ*=*GM*is the standard gravitational parameter*G*is the gravitational constant,*M*is the mass of the more massive body.

For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity.

Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period:

where:

*a*is the orbit's semi-major axis in meters,*G*is the gravitational constant,*M*is the mass of the more massive body,*T*is the orbital period in seconds.

For instance, for completing an orbit every 24 hours around a mass of 100 kg, a small body has to orbit at a distance of 1.08 meters from the central body's center of mass.

In the special case of perfectly circular orbits, the orbital velocity is constant and equal (in m/s) to

where:

*r*is the circular orbit's radius in meters,*G*is the gravitational constant,*M*is the mass of the central body.

This corresponds to ^{1}⁄_{√2} times (≈ 0.707 times) the escape velocity.

For a perfect sphere of uniform density, it is possible to rewrite the first equation without measuring the mass as:

where:

*r*is the sphere's radius*a*is the orbit's semi-major axis in meters,*G*is the gravitational constant,*ρ*is the density of the sphere in kilograms per cubic metre.

For instance, a small body in circular orbit 10.5 cm above the surface of a sphere of tungsten half a meter in radius would travel at slightly more than 1 mm/s, completing an orbit every hour. If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period.

When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density *ρ* (in kg/m^{3}), the above equation simplifies to (since *M* = *Vρ* = 4/3π*a*^{3}*ρ*)

Thus the orbital period in low orbit depends only on the density of the central body, regardless of its size.

So, for the Earth as the central body (or any other spherically symmetric body with the same mean density, about 5,515 kg/m^{3},^{ [3] } e.g. Mercury with 5,427 kg/m^{3} and Venus with 5,243 kg/m^{3}) we get:

*T*= 1.41 hours

and for a body made of water (*ρ* ≈ 1,000 kg/m^{3})^{ [4] }, respectively bodies with a similar density, e.g. Saturn's moons Iapetus with 1,088 kg/m^{3} and Tethys with 984 kg/m^{3} we get:

*T*= 3.30 hours

Thus, as an alternative for using a very small number like *G*, the strength of universal gravity can be described using some reference material, like water: the orbital period for an orbit just above the surface of a spherical body of water is 3 hours and 18 minutes. Conversely, this can be used as a kind of "universal" unit of time if we have a unit of mass, a unit of length and a unit of density.

In celestial mechanics, when both orbiting bodies' masses have to be taken into account, the **orbital period***T* can be calculated as follows:^{ [5] }

where:

*a*is the sum of the semi-major axes of the ellipses in which the centers of the bodies move, or equivalently, the semi-major axis of the ellipse in which one body moves, in the frame of reference with the other body at the origin (which is equal to their constant separation for circular orbits),*M*_{1}+*M*_{2}is the sum of the masses of the two bodies,*G*is the gravitational constant.

Note that the orbital period is independent of size: for a scale model it would be the same, when densities are the same (see also Orbit § Scaling in gravity).^{[ citation needed ]}

In a parabolic or hyperbolic trajectory, the motion is not periodic, and the duration of the full trajectory is infinite.

One of the observable characteristics of two bodies which orbit a third body in different orbits, and thus have different orbital periods, is their **synodic period**, which is the time between conjunctions.

An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth's surface, the so-called **synodic period**, applying to the elapsed time where planets return to the same kind of phenomena or location. For example, when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months.

If the orbital periods of the two bodies around the third are called *T*_{1} and *T*_{2}, so that *T*_{1} < *T*_{2}, their synodic period is given by:^{ [6] }

Table of synodic periods in the Solar System, relative to Earth:^{[ citation needed ]}

Object | Sidereal period (yr) | Synodic period | |
---|---|---|---|

(yr) | (d)^{ [7] } | ||

Mercury | 0.240846 (87.9691 days) | 0.317 | 115.88 |

Venus | 0.615 (225 days) | 1.599 | 583.9 |

Earth | 1 (365.25636 solar days) | — | |

Mars | 1.881 | 2.135 | 779.9 |

Jupiter | 11.86 | 1.092 | 398.9 |

Saturn | 29.46 | 1.035 | 378.1 |

Uranus | 84.01 | 1.012 | 369.7 |

Neptune | 164.8 | 1.006 | 367.5 |

134340 Pluto | 248.1 | 1.004 | 366.7 |

Moon | 0.0748 (27.32 days) | 0.0809 | 29.5306 |

99942 Apophis (near-Earth asteroid) | 0.886 | 7.769 | 2,837.6 |

4 Vesta | 3.629 | 1.380 | 504.0 |

1 Ceres | 4.600 | 1.278 | 466.7 |

10 Hygiea | 5.557 | 1.219 | 445.4 |

2060 Chiron | 50.42 | 1.020 | 372.6 |

50000 Quaoar | 287.5 | 1.003 | 366.5 |

136199 Eris | 557 | 1.002 | 365.9 |

90377 Sedna | 12050 | 1.0001 | 365.3 ^{[ citation needed ]} |

In the case of a planet's moon, the synodic period usually means the Sun-synodic period, namely, the time it takes the moon to complete its illumination phases, completing the solar phases for an astronomer on the planet's surface. The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d.^{[ citation needed ]}

The concept of synodic period does not just apply to the Earth, but also to other planets as well, and the formula for computation is the same as the one given above. Here is a table which lists the synodic periods of some planets relative to each other:

Relative to | Mars | Jupiter | Saturn | Chiron | Uranus | Neptune | Pluto | Quaoar | Eris |
---|---|---|---|---|---|---|---|---|---|

Sol | 1.881 | 11.86 | 29.46 | 50.42 | 84.01 | 164.8 | 248.1 | 287.5 | 557.0 |

Mars | 2.236 | 2.009 | 1.954 | 1.924 | 1.903 | 1.895 | 1.893 | 1.887 | |

Jupiter | 19.85 | 15.51 | 13.81 | 12.78 | 12.46 | 12.37 | 12.12 | ||

Saturn | 70.87 | 45.37 | 35.87 | 33.43 | 32.82 | 31.11 | |||

2060 Chiron | 126.1 | 72.65 | 63.28 | 61.14 | 55.44 | ||||

Uranus | 171.4 | 127.0 | 118.7 | 98.93 | |||||

Neptune | 490.8 | 386.1 | 234.0 | ||||||

134340 Pluto | 1810.4 | 447.4 | |||||||

50000 Quaoar | 594.2 |

Binary star | Orbital period |
---|---|

AM Canum Venaticorum | 17.146 minutes |

Beta Lyrae AB | 12.9075 days |

Alpha Centauri AB | 79.91 years |

Proxima Centauri – Alpha Centauri AB | 500,000 years or more |

- Geosynchronous orbit derivation
- Rotation period – time that it takes to complete one revolution around its axis of rotation
- Satellite revisit period
- Sidereal time
- Sidereal year
- Opposition (astronomy)
- List of periodic comets

- ↑ Oliver Montenbruck, Eberhard Gill (2000).
*Satellite Orbits: Models, Methods, and Applications*. Springer Science & Business Media. p. 50. ISBN 978-3-540-67280-7. - ↑ Bate, Mueller & White (1971), p. 33.
- ↑
*Density of the Earth*, wolframalpha.com - ↑
*Density of water*, wolframalpha.com - ↑ Bradley W. Carroll, Dale A. Ostlie. An introduction to modern astrophysics. 2nd edition. Pearson 2007.
- ↑ Hannu Karttunen; et al. (2016).
*Fundamental Astronomy*(6th ed.). Springer. p. 145. ISBN 9783662530450 . Retrieved December 7, 2018. - ↑ "Questions and Answers - Sten's Space Blog".
*www.astronomycafe.net*.

- Bate, Roger B.; Mueller, Donald D.; White, Jerry E. (1971),
*Fundamentals of Astrodynamics*, Dover

Look up in Wiktionary, the free dictionary. synodic |

In physics, an **orbit** is the gravitationally curved trajectory of an object, such as the trajectory of a planet around a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

**Tidal acceleration** is an effect of the tidal forces between an orbiting natural satellite, and the primary planet that it orbits. The acceleration causes a gradual recession of a satellite in a prograde orbit away from the primary, and a corresponding slowdown of the primary's rotation. The process eventually leads to tidal locking, usually of the smaller first, and later the larger body. The Earth–Moon system is the best-studied case.

In physics, **escape velocity** is the minimum speed needed for a free, non-propelled object to escape from the gravitational influence of a massive body, that is, to achieve an infinite distance from it. Escape velocity is a function of the mass of the body and distance to the center of mass of the body.

In celestial mechanics, the **Roche limit**, also called **Roche radius**, is the distance within which a celestial body, held together only by its own force of gravity, will disintegrate due to a second celestial body's tidal forces exceeding the first body's gravitational self-attraction. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit material tends to coalesce. The term is named after Édouard Roche, who was the French astronomer who first calculated this theoretical limit in 1848.

In Newtonian physics, **free fall** is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on it.

An **equatorial bulge** is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

**Orbital mechanics** or **astrodynamics** is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

In gravitationally bound systems, the **orbital speed** of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one object is much more massive than the other bodies in the system, its speed relative to the center of mass of the most massive body.

The **Schwarzschild radius** is a physical parameter that shows up in the Schwarzschild solution to Einstein's field equations, corresponding to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with every quantity of mass. The *Schwarzschild radius* was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

The **Gaussian gravitational constant** is a parameter used in the orbital mechanics of the solar system. It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses.

The **Hill sphere** or **Roche sphere** of an astronomical body is the region in which it dominates the attraction of satellites. The outer shell of that region constitutes a zero-velocity surface. To be retained by a planet, a moon must have an orbit that lies within the planet's Hill sphere. That moon would, in turn, have a Hill sphere of its own. Any object within that distance would tend to become a satellite of the moon, rather than of the planet itself. One simple view of the extent of the Solar System is the Hill sphere of the Sun with respect to local stars and the galactic nucleus.

A **Sun-synchronous orbit** is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is an orbit arranged so that it precesses through one complete revolution each year, so it always maintains the same relationship with the Sun.

In astrodynamics or celestial mechanics, a **hyperbolic trajectory** is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

In astrodynamics or celestial mechanics, an **elliptic orbit** or **elliptical orbit** is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1. In a wider sense, it is a Kepler's orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In orbital mechanics, **mean motion** is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

The **free-fall time** is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant role.

A **gravity train** is a theoretical means of transportation for purposes of commuting between two points on the surface of a sphere, by following a straight tunnel connecting the two points through the interior of the sphere.

For the majority of numbered asteroids, almost nothing is known apart from a few physical parameters and orbital elements and some physical characteristics are often only estimated. The physical data is determined by making certain standard assumptions.

"**Clearing the neighbourhood** around its orbit" is one of three necessary criteria for a celestial body to be considered a planet in the Solar System, according to the definition adopted in 2006 by the International Astronomical Union (IAU). In 2015, a proposal was made to extend this definition to exoplanets.

The **gravitational two-body problem** concerns the motion of two point particles that interact only with each other, due to gravity. This means that influences from any third body are neglected. For approximate results that is often suitable. It also means that the two bodies stay clear of each other, that is, the two do not collide, and one body does not pass through the other's atmosphere. Even if they do, the theory still holds for the part of the orbit where they don't. Apart from these considerations a spherically symmetric body can be approximated by a point mass.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.