A gravity turn or zero-lift turn is a maneuver used in launching a spacecraft into, or descending from, an orbit around a celestial body such as a planet or a moon. It is a trajectory optimization that uses gravity to steer the vehicle onto its desired trajectory. It offers two main advantages over a trajectory controlled solely through the vehicle's own thrust. First, the thrust is not used to change the spacecraft's direction, so more of it is used to accelerate the vehicle into orbit. Second, and more importantly, during the initial ascent phase the vehicle can maintain low or even zero angle of attack. This minimizes transverse aerodynamic stress on the launch vehicle, allowing for a lighter launch vehicle. [1] [2]
The term gravity turn can also refer to the use of a planet's gravity to change a spacecraft's direction in situations other than entering or leaving the orbit. [3] When used in this context, it is similar to a gravitational slingshot; the difference is that a gravitational slingshot often increases or decreases spacecraft velocity and changes direction, while the gravity turn only changes direction.
A gravity turn is commonly used with rocket powered vehicles that launch vertically, like the Space Shuttle. The rocket begins by flying straight up, gaining both vertical speed and altitude. During this portion of the launch, gravity acts directly against the thrust of the rocket, lowering its vertical acceleration. Losses associated with this slowing are known as gravity drag, and can be minimized by executing the next phase of the launch, the pitchover maneuver or roll program, as soon as possible. The pitchover should also be carried out while the vertical velocity is small to avoid large aerodynamic loads on the vehicle during the maneuver. [1]
The pitchover maneuver consists of the rocket gimbaling its engine slightly to direct some of its thrust to one side. This force creates a net torque on the ship, turning it so that it no longer points vertically. The pitchover angle varies with the launch vehicle and is included in the rocket's inertial guidance system. [1] For some vehicles it is only a few degrees, while other vehicles use relatively large angles (a few tens of degrees). After the pitchover is complete, the engines are reset to point straight down the axis of the rocket again. This small steering maneuver is the only time during an ideal gravity turn ascent that thrust must be used for purposes of steering. The pitchover maneuver serves two purposes. First, it turns the rocket slightly so that its flight path is no longer vertical, and second, it places the rocket on the correct heading for its ascent to orbit. After the pitchover, the rocket's angle of attack is adjusted to zero for the remainder of its climb to orbit. This zeroing of the angle of attack reduces lateral aerodynamic loads and produces negligible lift force during the ascent. [1]
After the pitchover, the rocket's flight path is no longer completely vertical, so gravity acts to turn the flight path back towards the ground. If the rocket were not producing thrust, the flight path would be a simple ellipse like a thrown ball (it is a common mistake to think it is a parabola: this is only true if it is assumed that the Earth is flat, and gravity always points in the same direction, which is a good approximation for short distances), leveling off and then falling back to the ground. The rocket is producing thrust though, and rather than leveling off and then descending again, by the time the rocket levels off, it has gained sufficient altitude and velocity to place it in a stable orbit.
If the rocket is a multi-stage system where stages fire sequentially, the rocket's ascent burn may not be continuous. Some time must be allowed for stage separation and engine ignition between each successive stage, but some rocket designs call for extra free-flight time between stages. This is particularly useful in very high thrust rockets, where if the engines were fired continuously, the rocket would run out of fuel before leveling off and reaching a stable orbit above the atmosphere. [2] The technique is also useful when launching from a planet with a thick atmosphere, such as the Earth. Because gravity turns the flight path during free flight, the rocket can use a smaller initial pitchover angle, giving it higher vertical velocity, and taking it out of the atmosphere more quickly. This reduces both aerodynamic drag as well as aerodynamic stress during launch. Then later during the flight the rocket coasts between stage firings, allowing it to level off above the atmosphere, so when the engine fires again, at zero angle of attack, the thrust accelerates the ship horizontally, inserting it into orbit.
Because heat shields and parachutes cannot be used to land on an airless body such as the Moon, a powered descent with a gravity turn is a good alternative. The Apollo Lunar Module used a slightly modified gravity turn to land from lunar orbit. This was essentially a launch in reverse except that a landing spacecraft is lightest at the surface while a spacecraft being launched is heaviest at the surface. A computer program called Lander that simulated gravity turn landings applied this concept by simulating a gravity turn launch with a negative mass flow rate, i.e. the propellant tanks filled during the rocket burn. [4] The idea of using a gravity turn maneuver to land a vehicle was originally developed for the Lunar Surveyor landings, although Surveyor made a direct approach to the surface without first going into lunar orbit. [5]
The vehicle begins by orienting for a retrograde burn to reduce its orbital velocity, lowering its point of periapsis to near the surface of the body to be landed on. If the craft is landing on a planet with an atmosphere such as Mars the deorbit burn will only lower periapsis into the upper layers of the atmosphere, rather than just above the surface as on an airless body. After the deorbit burn is complete the vehicle can either coast until it is nearer to its landing site or continue firing its engine while maintaining zero angle of attack. For a planet with an atmosphere the coast portion of the trip includes entry through the atmosphere as well.
After the coast and possible entry, the vehicle jettisons any no longer necessary heat shields and/or parachutes in preparation for the final landing burn. If the atmosphere is thick enough it can be used to slow the vehicle a considerable amount, thus saving on fuel. In this case a gravity turn is not the optimal entry trajectory but it does allow for approximation of the true delta-v required. [6] In the case where there is no atmosphere however, the landing vehicle must provide the full delta-v necessary to land safely on the surface.
If it is not already properly oriented, the vehicle lines up its engines to fire directly opposite its current surface velocity vector, which at this point is either parallel to the ground or only slightly vertical, as shown to the left. The vehicle then fires its landing engine to slow down for landing. As the vehicle loses horizontal velocity the gravity of the body to be landed on will begin pulling the trajectory closer and closer to a vertical descent. In an ideal maneuver on a perfectly spherical body the vehicle could reach zero horizontal velocity, zero vertical velocity, and zero altitude all at the same moment, landing safely on the surface (if the body is not rotating; else the horizontal velocity shall be made equal to the one of the body at the considered latitude). However, due to rocks and uneven surface terrain the vehicle usually picks up a few degrees of angle of attack near the end of the maneuver to zero its horizontal velocity just above the surface. This process is the mirror image of the pitch over maneuver used in the launch procedure and allows the vehicle to hover straight down, landing gently on the surface.
The steering of a rocket's course during its flight is divided into two separate components; control, the ability to point the rocket in a desired direction, and guidance, the determination of what direction a rocket should be pointed to reach a given target. The desired target can either be a location on the ground, as in the case of a ballistic missile, or a particular orbit, as in the case of a launch vehicle.
The gravity turn trajectory is most commonly used during early ascent. The guidance program is a precalculated lookup table of pitch vs time. Control is done with engine gimballing and/or aerodynamic control surfaces. The pitch program maintains a zero angle of attack (the definition of a gravity turn) until the vacuum of space is reached, thus minimizing lateral aerodynamic loads on the vehicle. (Excessive aerodynamic loads can quickly destroy the vehicle.) Although the preprogrammed pitch schedule is adequate for some applications, an adaptive inertial guidance system that determines location, orientation and velocity with accelerometers and gyroscopes, is almost always employed on modern rockets. The British satellite launcher Black Arrow was an example of a rocket that flew a preprogrammed pitch schedule, making no attempt to correct for errors in its trajectory, while the Apollo-Saturn rockets used "closed loop" inertial guidance after the gravity turn through the atmosphere. [7]
The initial pitch program is an open-loop system subject to errors from winds, thrust variations, etc. To maintain zero angle of attack during atmospheric flight, these errors are not corrected until reaching space. [8] Then a more sophisticated closed-loop guidance program can take over to correct trajectory deviations and attain the desired orbit. In the Apollo missions, the transition to closed-loop guidance took place early in second stage flight after maintaining a fixed inertial attitude while jettisoning the first stage and interstage ring. [8] Because the upper stages of a rocket operate in a near vacuum, fins are ineffective. Steering relies entirely on engine gimballing and a reaction control system.
To serve as an example of how the gravity turn can be used for a powered landing, an Apollo type lander on an airless body will be assumed. The lander begins in a circular orbit docked to the command module. After separation from the command module the lander performs a retrograde burn to lower its periapsis to just above the surface. It then coasts to periapsis where the engine is restarted to perform the gravity turn descent. It has been shown that in this situation guidance can be achieved by maintaining a constant angle between the thrust vector and the line of sight to the orbiting command module. [9] This simple guidance algorithm builds on a previous study which investigated the use of various visual guidance cues including the uprange horizon, the downrange horizon, the desired landing site, and the orbiting command module. [10] The study concluded that using the command module provides the best visual reference, as it maintains a near constant visual separation from an ideal gravity turn until the landing is almost complete. Because the vehicle is landing in a vacuum, aerodynamic control surfaces are useless. Therefore, a system such as a gimballing main engine, a reaction control system, or possibly a control moment gyroscope must be used for attitude control.
Although gravity turn trajectories use minimal steering thrust they are not always the most efficient possible launch or landing procedure. Several things can affect the gravity turn procedure making it less efficient or even impossible due to the design limitations of the launch vehicle. A brief summary of factors affecting the turn is given below.
For spacecraft missions where large changes in the direction of flight are necessary, direct propulsion by the spacecraft may not be feasible due to the large delta-v requirement. In these cases it may be possible to perform a flyby of a nearby planet or moon, using its gravitational attraction to alter the ship's direction of flight. Although this maneuver is very similar to the gravitational slingshot it differs in that a slingshot often implies a change in both speed and direction whereas the gravity turn only changes the direction of flight.
A variant of this maneuver, the free return trajectory allows the spacecraft to depart from a planet, circle another planet once, and return to the starting planet using propulsion only during the initial departure burn. Although in theory it is possible to execute a perfect free return trajectory, in practice small correction burns are often necessary during the flight. Even though it does not require a burn for the return trip, other return trajectory types, such as an aerodynamic turn, can result in a lower total delta-v for the mission. [3]
Many spaceflight missions have utilized the gravity turn, either directly or in a modified form, to carry out their missions. What follows is a short list of various mission that have used this procedure.
The simplest case of the gravity turn trajectory is that which describes a point mass vehicle, in a uniform gravitational field, neglecting air resistance. The thrust force is a vector whose magnitude is a function of time and whose direction can be varied at will. Under these assumptions the differential equation of motion is given by:
Here is a unit vector in the vertical direction and is the instantaneous vehicle mass. By constraining the thrust vector to point parallel to the velocity and separating the equation of motion into components parallel to and those perpendicular to we arrive at the following system: [13]
Here the current thrust to weight ratio has been denoted by and the current angle between the velocity vector and the vertical by , where . This results in a coupled system of equations which can be integrated to obtain the trajectory. However, for all but the simplest case of constant over the entire flight, the equations cannot be solved analytically and must be integrated numerically.
A rocket is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:
A liquid air cycle engine (LACE) is a type of spacecraft propulsion engine that attempts to increase its efficiency by gathering part of its oxidizer from the atmosphere. A liquid air cycle engine uses liquid hydrogen (LH2) fuel to liquefy the air.
Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.
In space mission design, a geostationary transfer orbit (GTO) or geosynchronous transfer orbit is a highly elliptical type of geocentric orbit, usually with a perigee as low as low Earth orbit (LEO) and an apogee as high as geostationary orbit (GEO). Satellites that are destined for geosynchronous orbit (GSO) or GEO are often put into a GTO as an intermediate step for reaching their final orbit. Manufacturers of launch vehicles often advertise the amount of payload the vehicle can put into GTO.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.
Delta-v, symbolized as and pronounced, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.
A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.
An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.
The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the conservation of momentum. It is credited to Konstantin Tsiolkovsky, who independently derived it and published it in 1903, although it had been independently derived and published by William Moore in 1810, and later published in a separate book in 1813. Robert Goddard also developed it independently in 1912, and Hermann Oberth derived it independently about 1920.
In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.
In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).
In astrodynamics and rocketry, gravity loss is a measure of the loss in the net performance of a rocket while it is thrusting in a gravitational field. In other words, it is the cost of having to hold the rocket up in a gravity field.
Space launch is the earliest part of a flight that reaches space. Space launch involves liftoff, when a rocket or other space launch vehicle leaves the ground, floating ship or midair aircraft at the start of a flight. Liftoff is of two main types: rocket launch, and non-rocket spacelaunch.
Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.
In spaceflight an orbit insertion is an orbital maneuver which adjusts a spacecraft’s trajectory, allowing entry into an orbit around a planet, moon, or other celestial body. An orbit insertion maneuver involves either deceleration from a speed in excess of the respective body's escape velocity, or acceleration to it from a lower speed.
This is an alphabetical list of articles pertaining specifically to aerospace engineering. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.
In astronautics, a powered flyby, or Oberth maneuver, is a maneuver in which a spacecraft falls into a gravitational well and then uses its engines to further accelerate as it is falling, thereby achieving additional speed. The resulting maneuver is a more efficient way to gain kinetic energy than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of a reaction engine at higher speeds generates a greater change in mechanical energy than its use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to burn its fuel is at the lowest possible orbital periapsis, when its orbital velocity is greatest. In some cases, it is even worth spending fuel on slowing the spacecraft into a gravity well to take advantage of the efficiencies of the Oberth effect. The maneuver and effect are named after the person who first described them in 1927, Hermann Oberth, a Transylvanian Saxon physicist and a founder of modern rocketry.
This glossary of aerospace engineering terms pertains specifically to aerospace engineering, its sub-disciplines, and related fields including aviation and aeronautics. For a broad overview of engineering, see glossary of engineering.