Mean longitude

Last updated

Mean longitude is the ecliptic longitude at which an orbiting body could be found if its orbit were circular and free of perturbations. While nominally a simple longitude, in practice the mean longitude does not correspond to any one physical angle. [1]

Contents

Definition

An orbiting body's mean longitude is calculated L = O + o + M, where O is the longitude of the ascending node, o is the argument of the pericenter and M is the mean anomaly, the body's angular distance from the pericenter as if it moved with constant speed rather than with the variable speed of an elliptical orbit. Its true longitude is calculated similarly, l = O + o + n, where n is the true anomaly. Orbit1-mean.png
An orbiting body's mean longitude is calculated L = Ω + ω + M, where Ω is the longitude of the ascending node, ω is the argument of the pericenter and M is the mean anomaly , the body's angular distance from the pericenter as if it moved with constant speed rather than with the variable speed of an elliptical orbit. Its true longitude is calculated similarly, l = Ω + ω + ν, where ν is the true anomaly.

From these definitions, the mean longitude, L, is the angular distance the body would have from the reference direction if it moved with uniform speed,

L = Ω + ω + M,

measured along the ecliptic from ♈︎ to the ascending node, then up along the plane of the body's orbit to its mean position. [2]

Discussion

Mean longitude, like mean anomaly, does not measure an angle between any physical objects. It is simply a convenient uniform measure of how far around its orbit a body has progressed since passing the reference direction. While mean longitude measures a mean position and assumes constant speed, true longitude measures the actual longitude and assumes the body has moved with its actual speed, which varies around its elliptical orbit. The difference between the two is known as the equation of the center. [3]

Formulae

From the above definitions, define the longitude of the pericenter

ϖ = Ω + ω.

Then mean longitude is also [1]

L = ϖ + M.

Another form often seen is the mean longitude at epoch, ε. This is simply the mean longitude at a reference time t0, known as the epoch. Mean longitude can then be expressed, [2]

L = ε + n(tt0), or
L = ε + nt, since t = 0 at the epoch t0.

where n is the mean angular motion and t is any arbitrary time. In some sets of orbital elements, ε is one of the six elements. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Ecliptic</span> Apparent path of the Sun on the celestial sphere

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.

<span class="mw-page-title-main">Ecliptic coordinate system</span> Celestial coordinate system used to describe Solar System objects

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the vernal (March) equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

<span class="mw-page-title-main">Apsis</span> Either of two extreme points in a celestial objects orbit

An apsis is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides is the line connecting the two extreme values.

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.

<span class="mw-page-title-main">Longitude of the ascending node</span> Defining the orbit of an object in space

The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a specified reference direction, called the origin of longitude, to the direction of the ascending node, as measured in a specified reference plane. The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image. Commonly used reference planes and origins of longitude include:

<span class="mw-page-title-main">Mean anomaly</span> Specifies the orbit of an object in space

In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical two-body problem. It is the angular distance from the pericenter which a fictitious body would have if it moved in a circular orbit, with constant speed, in the same orbital period as the actual body in its elliptical orbit.

<span class="mw-page-title-main">Argument of periapsis</span> Specifies the orbit of an object in space

The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body's ascending node to its periapsis, measured in the direction of motion.

<span class="mw-page-title-main">Longitude of the periapsis</span>

In celestial mechanics, the longitude of the periapsis, also called longitude of the pericenter, of an orbiting body is the longitude at which the periapsis would occur if the body's orbit inclination were zero. It is usually denoted ϖ.

In celestial mechanics true longitude is the ecliptic longitude at which an orbiting body could actually be found if its inclination were zero. Together with the inclination and the ascending node, the true longitude can tell us the precise direction from the central object at which the body would be located at a particular time.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities. Those Greek letters which have the same form as Latin letters are rarely used: capital A, B, E, Z, H, I, K, M, N, O, P, T, Y, X. Small ι, ο and υ are also rarely used, since they closely resemble the Latin letters i, o and u. Sometimes, font variants of Greek letters are used as distinct symbols in mathematics, in particular for ε/ϵ and π/ϖ. The archaic letter digamma (Ϝ/ϝ/ϛ) is sometimes used.

<span class="mw-page-title-main">Orbit of the Moon</span> The Moons circuit around the Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km (2,900 mi) from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 385,000 km (239,000 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.

The semi-analytic planetary theory VSOP is a mathematical model describing long-term changes in the orbits of the planets Mercury to Neptune. The earliest modern scientific model considered only the gravitational attraction between the Sun and each planet, with the resulting orbits being unvarying Keplerian ellipses. In reality, all the planets exert slight forces on each other, causing slow changes in the shape and orientation of these ellipses. Increasingly complex analytical models have been made of these deviations, as well as efficient and accurate numerical approximation methods.

<span class="mw-page-title-main">Orbit determination</span>

Orbit determination is the estimation of orbits of objects such as moons, planets, and spacecraft. One major application is to allow tracking newly observed asteroids and verify that they have not been previously discovered. The basic methods were discovered in the 17th century and have been continuously refined.

<span class="mw-page-title-main">Semi-major and semi-minor axes</span> Term in geometry; longest and shortest semidiameters of an ellipse

In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

A tropical year or solar year is the time that the Sun takes to return to the same position in the sky of a celestial body of the Solar System such as the Earth, completing a full cycle of seasons; for example, the time from vernal equinox to vernal equinox, or from summer solstice to summer solstice. It is the type of year used by tropical solar calendars. The solar year is one type of astronomical year and particular orbital period. Another type is the sidereal year, which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the fixed stars, resulting in a duration of 20 minutes longer than the tropical year, because of the precession of the equinoxes.

<span class="mw-page-title-main">Lunar month</span> Time between successive new moons

In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month.

References

  1. 1 2 Meeus, Jean (1991). Astronomical Algorithms . Willmann-Bell, Inc., Richmond, VA. pp.  197–198. ISBN   0-943396-35-2.
  2. 1 2 3 Smart, W. M. (1977). Textbook on Spherical Astronomy (sixth ed.). Cambridge University Press, Cambridge. p. 122. ISBN   0-521-29180-1.
  3. Meeus, Jean (1991). p. 222