Kepler orbit

Last updated

An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation (13) Kepler orbits.svg
An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ( 13 )

In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

Contents

In most applications, there is a large central body, the center of mass of which is assumed to be the center of mass of the entire system. By decomposition, the orbits of two objects of similar mass can be described as Kepler orbits around their common center of mass, their barycenter.

Introduction

From ancient times until the 16th and 17th centuries, the motions of the planets were believed to follow perfectly circular geocentric paths as taught by the ancient Greek philosophers Aristotle and Ptolemy. Variations in the motions of the planets were explained by smaller circular paths overlaid on the larger path (see epicycle). As measurements of the planets became increasingly accurate, revisions to the theory were proposed. In 1543, Nicolaus Copernicus published a heliocentric model of the Solar System, although he still believed that the planets traveled in perfectly circular paths centered on the Sun. [1]

Development of the laws

In 1601, Johannes Kepler acquired the extensive, meticulous observations of the planets made by Tycho Brahe. Kepler would spend the next five years trying to fit the observations of the planet Mars to various curves. In 1609, Kepler published the first two of his three laws of planetary motion. The first law states:

The orbit of every planet is an ellipse with the sun at a focus.

More generally, the path of an object undergoing Keplerian motion may also follow a parabola or a hyperbola, which, along with ellipses, belong to a group of curves known as conic sections. Mathematically, the distance between a central body and an orbiting body can be expressed as:

where:

Alternately, the equation can be expressed as:

Where is called the semi-latus rectum of the curve. This form of the equation is particularly useful when dealing with parabolic trajectories, for which the semi-major axis is infinite.

Despite developing these laws from observations, Kepler was never able to develop a theory to explain these motions. [2]

Isaac Newton

Between 1665 and 1666, Isaac Newton developed several concepts related to motion, gravitation and differential calculus. However, these concepts were not published until 1687 in the Principia, in which he outlined his laws of motion and his law of universal gravitation. His second of his three laws of motion states:

The acceleration of a body is parallel and directly proportional to the net force acting on the body, is in the direction of the net force, and is inversely proportional to the mass of the body:

Where:

  • is the force vector
  • is the mass of the body on which the force is acting
  • is the acceleration vector, the second time derivative of the position vector

Strictly speaking, this form of the equation only applies to an object of constant mass, which holds true based on the simplifying assumptions made below.

The mechanisms of Newton's law of universal gravitation; a point mass m1 attracts another point mass m2 by a force F2 which is proportional to the product of the two masses and inversely proportional to the square of the distance (r) between them. Regardless of masses or distance, the magnitudes of |F1| and |F2| will always be equal. G is the gravitational constant. NewtonsLawOfUniversalGravitation.svg
The mechanisms of Newton's law of universal gravitation; a point mass m1 attracts another point mass m2 by a force F2 which is proportional to the product of the two masses and inversely proportional to the square of the distance (r) between them. Regardless of masses or distance, the magnitudes of |F1| and |F2| will always be equal. G is the gravitational constant.

Newton's law of gravitation states:

Every point mass attracts every other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between the point masses:

where:

  • is the magnitude of the gravitational force between the two point masses
  • is the gravitational constant
  • is the mass of the first point mass
  • is the mass of the second point mass
  • is the distance between the two point masses

From the laws of motion and the law of universal gravitation, Newton was able to derive Kepler's laws, which are specific to orbital motion in astronomy. Since Kepler's laws were well-supported by observation data, this consistency provided strong support of the validity of Newton's generalized theory, and unified celestial and ordinary mechanics. These laws of motion formed the basis of modern celestial mechanics until Albert Einstein introduced the concepts of special and general relativity in the early 20th century. For most applications, Keplerian motion approximates the motions of planets and satellites to relatively high degrees of accuracy and is used extensively in astronomy and astrodynamics.

Simplified two body problem

To solve for the motion of an object in a two body system, two simplifying assumptions can be made:

  1. The bodies are spherically symmetric and can be treated as point masses.
  2. There are no external or internal forces acting upon the bodies other than their mutual gravitation.

The shapes of large celestial bodies are close to spheres. By symmetry, the net gravitational force attracting a mass point towards a homogeneous sphere must be directed towards its centre. The shell theorem (also proven by Isaac Newton) states that the magnitude of this force is the same as if all mass was concentrated in the middle of the sphere, even if the density of the sphere varies with depth (as it does for most celestial bodies). From this immediately follows that the attraction between two homogeneous spheres is as if both had its mass concentrated to its center.

Smaller objects, like asteroids or spacecraft often have a shape strongly deviating from a sphere. But the gravitational forces produced by these irregularities are generally small compared to the gravity of the central body. The difference between an irregular shape and a perfect sphere also diminishes with distances, and most orbital distances are very large when compared with the diameter of a small orbiting body. Thus for some applications, shape irregularity can be neglected without significant impact on accuracy. This effect is quite noticeable for artificial Earth satellites, especially those in low orbits.

Planets rotate at varying rates and thus may take a slightly oblate shape because of the centrifugal force. With such an oblate shape, the gravitational attraction will deviate somewhat from that of a homogeneous sphere. At larger distances the effect of this oblateness becomes negligible. Planetary motions in the Solar System can be computed with sufficient precision if they are treated as point masses.

Two point mass objects with masses and and position vectors and relative to some inertial reference frame experience gravitational forces:

where is the relative position vector of mass 1 with respect to mass 2, expressed as:

and is the unit vector in that direction and is the length of that vector.

Dividing by their respective masses and subtracting the second equation from the first yields the equation of motion for the acceleration of the first object with respect to the second:

 

 

 

 

(1)

where is the gravitational parameter and is equal to

In many applications, a third simplifying assumption can be made:

  1. When compared to the central body, the mass of the orbiting body is insignificant. Mathematically, m1 >> m2, so α = G (m1 + m2) Gm1. Such standard gravitational parameters, often denoted as , are widely available for Sun, major planets and Moon, which have much larger masses than their orbiting satellites.

This assumption is not necessary to solve the simplified two body problem, but it simplifies calculations, particularly with Earth-orbiting satellites and planets orbiting the Sun. Even Jupiter's mass is less than the Sun's by a factor of 1047, [3] which would constitute an error of 0.096% in the value of α. Notable exceptions include the Earth-Moon system (mass ratio of 81.3), the Pluto-Charon system (mass ratio of 8.9) and binary star systems.

Under these assumptions the differential equation for the two body case can be completely solved mathematically and the resulting orbit which follows Kepler's laws of planetary motion is called a "Kepler orbit". The orbits of all planets are to high accuracy Kepler orbits around the Sun. The small deviations are due to the much weaker gravitational attractions between the planets, and in the case of Mercury, due to general relativity. The orbits of the artificial satellites around the Earth are, with a fair approximation, Kepler orbits with small perturbations due to the gravitational attraction of the Sun, the Moon and the oblateness of the Earth. In high accuracy applications for which the equation of motion must be integrated numerically with all gravitational and non-gravitational forces (such as solar radiation pressure and atmospheric drag) being taken into account, the Kepler orbit concepts are of paramount importance and heavily used.

Keplerian elements

Keplerian orbital elements. Orbit1.svg
Keplerian orbital elements.

Any Keplerian trajectory can be defined by six parameters. The motion of an object moving in three-dimensional space is characterized by a position vector and a velocity vector. Each vector has three components, so the total number of values needed to define a trajectory through space is six. An orbit is generally defined by six elements (known as Keplerian elements) that can be computed from position and velocity, three of which have already been discussed. These elements are convenient in that of the six, five are unchanging for an unperturbed orbit (a stark contrast to two constantly changing vectors). The future location of an object within its orbit can be predicted and its new position and velocity can be easily obtained from the orbital elements.

Two define the size and shape of the trajectory:

Three define the orientation of the orbital plane:

And finally:

Because , and are simply angular measurements defining the orientation of the trajectory in the reference frame, they are not strictly necessary when discussing the motion of the object within the orbital plane. They have been mentioned here for completeness, but are not required for the proofs below.

Mathematical solution of the differential equation ( 1 ) above

For movement under any central force, i.e. a force parallel to r, the specific relative angular momentum stays constant:

Since the cross product of the position vector and its velocity stays constant, they must lie in the same plane, orthogonal to . This implies the vector function is a plane curve.

Because the equation has symmetry around its origin, it is easier to solve in polar coordinates. However, it is important to note that equation ( 1 ) refers to linear acceleration as opposed to angular or radial acceleration. Therefore, one must be cautious when transforming the equation. Introducing a cartesian coordinate system and polar unit vectors in the plane orthogonal to :

We can now rewrite the vector function and its derivatives as:

(see "Vector calculus"). Substituting these into ( 1 ), we find:

This gives the ordinary differential equation in the two variables and :

 

 

 

 

(2)

In order to solve this equation, all time derivatives must be eliminated. This brings:

 

 

 

 

(3)

Taking the time derivative of ( 3 ) gets

 

 

 

 

(4)

Equations ( 3 ) and ( 4 ) allow us to eliminate the time derivatives of . In order to eliminate the time derivatives of , the chain rule is used to find appropriate substitutions:

 

 

 

 

(5)

 

 

 

 

(6)

Using these four substitutions, all time derivatives in ( 2 ) can be eliminated, yielding an ordinary differential equation for as function of

 

 

 

 

(7)

The differential equation ( 7 ) can be solved analytically by the variable substitution

 

 

 

 

(8)

Using the chain rule for differentiation gets:

 

 

 

 

(9)

 

 

 

 

(10)

Using the expressions ( 10 ) and ( 9 ) for and gets

 

 

 

 

(11)

with the general solution

 

 

 

 

(12)

where e and are constants of integration depending on the initial values for s and

Instead of using the constant of integration explicitly one introduces the convention that the unit vectors defining the coordinate system in the orbital plane are selected such that takes the value zero and e is positive. This then means that is zero at the point where is maximal and therefore is minimal. Defining the parameter p as one has that

Alternate derivation

Another way to solve this equation without the use of polar differential equations is as follows:

Define a unit vector , , such that and . It follows that

Now consider

(see Vector triple product). Notice that

Substituting these values into the previous equation gives:

Integrating both sides:

where c is a constant vector. Dotting this with r yields an interesting result:

where is the angle between and . Solving for r:

Notice that are effectively the polar coordinates of the vector function. Making the substitutions and , we again arrive at the equation

 

 

 

 

(13)

This is the equation in polar coordinates for a conic section with origin in a focal point. The argument is called "true anomaly".

Eccentricity Vector

Notice also that, since is the angle between the position vector and the integration constant , the vector must be pointing in the direction of the periapsis of the orbit. We can then define the eccentricity vector associated with the orbit as:

where is the constant angular momentum vector of the orbit, and is the velocity vector associated with the position vector .

Obviously, the eccentricity vector, having the same direction as the integration constant , also points to the direction of the periapsis of the orbit, and it has the magnitude of orbital eccentricity. This makes it very useful in orbit determination (OD) for the orbital elements of an orbit when a state vector [] or [] is known.

Properties of trajectory equation

For this is a circle with radius p.

For this is an ellipse with

 

 

 

 

(14)

 

 

 

 

(15)

For this is a parabola with focal length

For this is a hyperbola with

 

 

 

 

(16)

 

 

 

 

(17)

The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue)

A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0). OrbitalEccentricityDemo.svg
A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).

The point on the horizontal line going out to the right from the focal point is the point with for which the distance to the focus takes the minimal value the pericentre. For the ellipse there is also an apocentre for which the distance to the focus takes the maximal value For the hyperbola the range for is

and for a parabola the range is

Using the chain rule for differentiation ( 5 ), the equation ( 2 ) and the definition of p as one gets that the radial velocity component is

 

 

 

 

(18)

and that the tangential component (velocity component perpendicular to ) is

 

 

 

 

(19)

The connection between the polar argument and time t is slightly different for elliptic and hyperbolic orbits.

For an elliptic orbit one switches to the "eccentric anomaly" E for which

 

 

 

 

(20)

 

 

 

 

(21)

and consequently

 

 

 

 

(22)

 

 

 

 

(23)

and the angular momentum H is

 

 

 

 

(24)

Integrating with respect to time t gives

 

 

 

 

(25)

under the assumption that time is selected such that the integration constant is zero.

As by definition of p one has

 

 

 

 

(26)

this can be written

 

 

 

 

(27)

For a hyperbolic orbit one uses the hyperbolic functions for the parameterisation

 

 

 

 

(28)

 

 

 

 

(29)

for which one has

 

 

 

 

(30)

 

 

 

 

(31)

and the angular momentum H is

 

 

 

 

(32)

Integrating with respect to time t gets

 

 

 

 

(33)

i.e.

 

 

 

 

(34)

To find what time t that corresponds to a certain true anomaly one computes corresponding parameter E connected to time with relation ( 27 ) for an elliptic and with relation ( 34 ) for a hyperbolic orbit.

Note that the relations ( 27 ) and ( 34 ) define a mapping between the ranges

Some additional formulae

For an elliptic orbit one gets from ( 20 ) and ( 21 ) that

 

 

 

 

(35)

and therefore that

 

 

 

 

(36)

From ( 36 ) then follows that

From the geometrical construction defining the eccentric anomaly it is clear that the vectors and are on the same side of the x-axis. From this then follows that the vectors and are in the same quadrant. One therefore has that

 

 

 

 

(37)

and that

 

 

 

 

(38)

 

 

 

 

(39)

where "" is the polar argument of the vector and n is selected such that

For the numerical computation of the standard function ATAN2(y,x) (or in double precision DATAN2(y,x)) available in for example the programming language FORTRAN can be used.

Note that this is a mapping between the ranges

For a hyperbolic orbit one gets from ( 28 ) and ( 29 ) that

 

 

 

 

(40)

and therefore that

 

 

 

 

(41)

As

and as and have the same sign it follows that

 

 

 

 

(42)

This relation is convenient for passing between "true anomaly" and the parameter E, the latter being connected to time through relation ( 34 ). Note that this is a mapping between the ranges

and that can be computed using the relation

From relation ( 27 ) follows that the orbital period P for an elliptic orbit is

 

 

 

 

(43)

As the potential energy corresponding to the force field of relation ( 1 ) is

it follows from ( 13 ), ( 14 ), ( 18 ) and ( 19 ) that the sum of the kinetic and the potential energy

for an elliptic orbit is

 

 

 

 

(44)

and from ( 13 ), ( 16 ), ( 18 ) and ( 19 ) that the sum of the kinetic and the potential energy for a hyperbolic orbit is

 

 

 

 

(45)

Relative the inertial coordinate system

in the orbital plane with towards pericentre one gets from ( 18 ) and ( 19 ) that the velocity components are

 

 

 

 

(46)

 

 

 

 

(47)

The equation of the center relates mean anomaly to true anomaly for elliptical orbits, for small numerical eccentricity.

Determination of the Kepler orbit that corresponds to a given initial state

This is the "initial value problem" for the differential equation ( 1 ) which is a first order equation for the 6-dimensional "state vector" when written as

 

 

 

 

(48)

 

 

 

 

(49)

For any values for the initial "state vector" the Kepler orbit corresponding to the solution of this initial value problem can be found with the following algorithm:

Define the orthogonal unit vectors through

 

 

 

 

(50)

 

 

 

 

(51)

with and

From ( 13 ), ( 18 ) and ( 19 ) follows that by setting

 

 

 

 

(52)

and by defining and such that

 

 

 

 

(53)

 

 

 

 

(54)

where

 

 

 

 

(55)

one gets a Kepler orbit that for true anomaly has the same r, and values as those defined by ( 50 ) and ( 51 ).

If this Kepler orbit then also has the same vectors for this true anomaly as the ones defined by ( 50 ) and ( 51 ) the state vector of the Kepler orbit takes the desired values for true anomaly .

The standard inertially fixed coordinate system in the orbital plane (with directed from the centre of the homogeneous sphere to the pericentre) defining the orientation of the conical section (ellipse, parabola or hyperbola) can then be determined with the relation

 

 

 

 

(56)

 

 

 

 

(57)

Note that the relations ( 53 ) and ( 54 ) has a singularity when and

i.e.

 

 

 

 

(58)

which is the case that it is a circular orbit that is fitting the initial state

The osculating Kepler orbit

For any state vector the Kepler orbit corresponding to this state can be computed with the algorithm defined above. First the parameters are determined from and then the orthogonal unit vectors in the orbital plane using the relations ( 56 ) and ( 57 ).

If now the equation of motion is

 

 

 

 

(59)

where

is a function other than

the resulting parameters , , , , defined by will all vary with time as opposed to the case of a Kepler orbit for which only the parameter will vary.

The Kepler orbit computed in this way having the same "state vector" as the solution to the "equation of motion" ( 59 ) at time t is said to be "osculating" at this time.

This concept is for example useful in case

where

is a small "perturbing force" due to for example a faint gravitational pull from other celestial bodies. The parameters of the osculating Kepler orbit will then only slowly change and the osculating Kepler orbit is a good approximation to the real orbit for a considerable time period before and after the time of osculation.

This concept can also be useful for a rocket during powered flight as it then tells which Kepler orbit the rocket would continue in case the thrust is switched off.

For a "close to circular" orbit the concept "eccentricity vector" defined as is useful. From ( 53 ), ( 54 ) and ( 56 ) follows that

 

 

 

 

(60)

i.e. is a smooth differentiable function of the state vector also if this state corresponds to a circular orbit.

See also

Citations

  1. Copernicus. pp 513–514
  2. Bate, Mueller, White. pp 177–181
  3. "NASA website". Archived from the original on 16 February 2011. Retrieved 12 August 2012.

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.

In celestial mechanics, the specific relative angular momentum of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question.

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and preliminary orbit determination.

In classical mechanics, the Udwadia–Kalaba formulation is a method for deriving the equations of motion of a constrained mechanical system. The method was first described by Vereshchagin for the particular case of robotic arms, and later generalized to all mechanical systems by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The approach is based on Gauss's principle of least constraint. The Udwadia–Kalaba method applies to both holonomic constraints and nonholonomic constraints, as long as they are linear with respect to the accelerations. The method generalizes to constraint forces that do not obey D'Alembert's principle.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity. Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects. Directly modeling an orbit can push the limits of machine precision due to the need to model small perturbations to very large orbits. Because of this, perturbation methods are often used to model the orbit in order to achieve better accuracy.

In orbital mechanics, Gauss's method is used for preliminary orbit determination from at least three observations of the orbiting body of interest at three different times. The required information are the times of observations, the position vectors of the observation points, the direction cosine vector of the orbiting body from the observation points and general physical data.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References