Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity. Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects. Directly modeling an orbit can push the limits of machine precision due to the need to model small perturbations to very large orbits. Because of this, perturbation methods are often used to model the orbit in order to achieve better accuracy.
The study of orbital motion and mathematical modeling of orbits began with the first attempts to predict planetary motions in the sky, although in ancient times the causes remained a mystery. Newton, at the time he formulated his laws of motion and of gravitation, applied them to the first analysis of perturbations, [1] recognizing the complex difficulties of their calculation. [1] Many of the great mathematicians since then have given attention to the various problems involved; throughout the 18th and 19th centuries there was demand for accurate tables of the position of the Moon and planets for purposes of navigation at sea.
The complex motions of orbits can be broken down. The hypothetical motion that the body follows under the gravitational effect of one other body only is typically a conic section, and can be readily modeled with the methods of geometry. This is called a two-body problem, or an unperturbed Keplerian orbit. The differences between the Keplerian orbit and the actual motion of the body are caused by perturbations. These perturbations are caused by forces other than the gravitational effect between the primary and secondary body and must be modeled to create an accurate orbit simulation. Most orbit modeling approaches model the two-body problem and then add models of these perturbing forces and simulate these models over time. Perturbing forces may include gravitational attraction from other bodies besides the primary, solar wind, drag, magnetic fields, and propulsive forces.
Analytical solutions (mathematical expressions to predict the positions and motions at any future time) for simple two-body and three-body problems exist; none have been found for the n-body problem except for certain special cases. Even the two-body problem becomes insoluble if one of the bodies is irregular in shape. [2]
Due to the difficulty in finding analytic solutions to most problems of interest, computer modeling and simulation is typically used to analyze orbital motion. A wide variety of software is available to simulate orbits and trajectories of spacecraft.
In its simplest form, an orbit model can be created by assuming that only two bodies are involved, both behave as spherical point-masses, and that no other forces act on the bodies. For this case the model is simplified to a Kepler orbit.
Keplerian orbits follow conic sections. The mathematical model of the orbit which gives the distance between a central body and an orbiting body can be expressed as:
Where:
Alternately, the equation can be expressed as:
Where is called the semi-latus rectum of the curve. This form of the equation is particularly useful when dealing with parabolic trajectories, for which the semi-major axis is infinite.
An alternate approach uses Isaac Newton's law of universal gravitation as defined below:
where:
Making an additional assumption that the mass of the primary body is much greater than the mass of the secondary body and substituting in Newton's second law of motion, results in the following differential equation
Solving this differential equation results in Keplerian motion for an orbit. In practice, Keplerian orbits are typically only useful for first-order approximations, special cases, or as the base model for a perturbed orbit.
Orbit models are typically propagated in time and space using special perturbation methods. This is performed by first modeling the orbit as a Keplerian orbit. Then perturbations are added to the model to account for the various perturbations that affect the orbit. [1] Special perturbations can be applied to any problem in celestial mechanics, as it is not limited to cases where the perturbing forces are small. [2] Special perturbation methods are the basis of the most accurate machine-generated planetary ephemerides. [1] see, for instance, Jet Propulsion Laboratory Development Ephemeris
Cowell's method is a special perturbation method; [3] mathematically, for mutually interacting bodies, Newtonian forces on body from the other bodies are simply summed thus,
where
with all vectors being referred to the barycenter of the system. This equation is resolved into components in , , and these are integrated numerically to form the new velocity and position vectors as the simulation moves forward in time. The advantage of Cowell's method is ease of application and programming. A disadvantage is that when perturbations become large in magnitude (as when an object makes a close approach to another) the errors of the method also become large. [4] Another disadvantage is that in systems with a dominant central body, such as the Sun, it is necessary to carry many significant digits in the arithmetic because of the large difference in the forces of the central body and the perturbing bodies. [5]
Encke's method begins with the osculating orbit as a reference and integrates numerically to solve for the variation from the reference as a function of time. [6] Its advantages are that perturbations are generally small in magnitude, so the integration can proceed in larger steps (with resulting lesser errors), and the method is much less affected by extreme perturbations than Cowell's method. Its disadvantage is complexity; it cannot be used indefinitely without occasionally updating the osculating orbit and continuing from there, a process known as rectification. [4] [7]
Letting be the radius vector of the osculating orbit, the radius vector of the perturbed orbit, and the variation from the osculating orbit,
and the equation of motion of is simply | 1 |
2 |
and are just the equations of motion of and ,
for the perturbed orbit and | 3 |
for the unperturbed orbit, | 4 |
where is the gravitational parameter with and the masses of the central body and the perturbed body, is the perturbing acceleration, and and are the magnitudes of and .
Substituting from equations ( 3 ) and ( 4 ) into equation ( 2 ),
5 |
which, in theory, could be integrated twice to find . Since the osculating orbit is easily calculated by two-body methods, and are accounted for and can be solved. In practice, the quantity in the brackets, , is the difference of two nearly equal vectors, and further manipulation is necessary to avoid the need for extra significant digits. [8] [9]
In 1991 Victor R. Bond and Michael F. Fraietta created an efficient and highly accurate method for solving the two-body perturbed problem. [10] This method uses the linearized and regularized differential equations of motion derived by Hans Sperling and a perturbation theory based on these equations developed by C.A. Burdet in the year 1864. In 1973, Bond and Hanssen improved Burdet's set of differential equations by using the total energy of the perturbed system as a parameter instead of the two-body energy and by reducing the number of elements to 13. In 1989 Bond and Gottlieb embedded the Jacobian integral, which is a constant when the potential function is explicitly dependent upon time as well as position in the Newtonian equations. The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In this process, another element which is proportional to a component of the angular momentum is introduced. This brought the total number of elements back to 14. In 1991, Bond and Fraietta made further revisions by replacing the Laplace vector with another vector integral as well as another scalar integral which removed small secular terms which appeared in the differential equations for some of the elements. [11]
The Sperling–Burdet method is executed in a 5 step process as follows: [11]
Perturbing forces cause orbits to become perturbed from a perfect Keplerian orbit. Models for each of these forces are created and executed during the orbit simulation so their effects on the orbit can be determined.
The Earth is not a perfect sphere nor is mass evenly distributed within the Earth. This results in the point-mass gravity model being inaccurate for orbits around the Earth, particularly Low Earth orbits. To account for variations in gravitational potential around the surface of the Earth, the gravitational field of the Earth is modeled with spherical harmonics [12] which are expressed through the equation:
where
where:
When modeling perturbations of an orbit around a primary body only the sum of the terms need to be included in the perturbation since the point-mass gravity model is accounted for in the term
Gravitational forces from third bodies can cause perturbations to an orbit. For example, the Sun and Moon cause perturbations to Orbits around the Earth. [13] These forces are modeled in the same way that gravity is modeled for the primary body by means of direct gravitational N-body simulations. Typically, only a spherical point-mass gravity model is used for modeling effects from these third bodies. [14] Some special cases of third-body perturbations have approximate analytic solutions. For example, perturbations for the right ascension of the ascending node and argument of perigee for a circular Earth orbit are: [13]
Solar radiation pressure causes perturbations to orbits. The magnitude of acceleration it imparts to a spacecraft in Earth orbit is modeled using the equation below: [13]
where:
For orbits around the Earth, solar radiation pressure becomes a stronger force than drag above 800 km (500 mi) altitude. [13]
There are many different types of spacecraft propulsion. Rocket engines are one of the most widely used. The force of a rocket engine is modeled by the equation: [15]
where: | |
= exhaust gas mass flow | |
= effective exhaust velocity | |
= actual jet velocity at nozzle exit plane | |
= flow area at nozzle exit plane (or the plane where the jet leaves the nozzle if separated flow) | |
= static pressure at nozzle exit plane | |
= ambient (or atmospheric) pressure |
Another possible method is a solar sail. Solar sails use radiation pressure in a way to achieve a desired propulsive force. [16] The perturbation model due to the solar wind can be used as a model of propulsive force from a solar sail.
The primary non-gravitational force acting on satellites in low Earth orbit is atmospheric drag. [13] Drag will act in opposition to the direction of velocity and remove energy from an orbit. The force due to drag is modeled by the following equation:
where
Orbits with an altitude below 120 km (75 mi) generally have such high drag that the orbits decay too rapidly to give a satellite a sufficient lifetime to accomplish any practical mission. On the other hand, orbits with an altitude above 600 km (370 mi) have relatively small drag so that the orbit decays slow enough that it has no real impact on the satellite over its useful life. [13] Density of air can vary significantly in the thermosphere where most low Earth orbiting satellites reside. The variation is primarily due to solar activity, and thus solar activity can greatly influence the force of drag on a spacecraft and complicate long-term orbit simulation. [13]
Magnetic fields can play a significant role as a source of orbit perturbation as was seen in the Long Duration Exposure Facility. [12] Like gravity, the magnetic field of the Earth can be expressed through spherical harmonics as shown below: [12]
where
where:
Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles.
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609, describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary velocities vary. The three laws state that:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relative to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis. It plays the same role in rotational motion as mass does in linear motion. A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis.
In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.
In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.
In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.
The Breit equation, or Dirac–Coulomb–Breit equation, is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.
In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity.
In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.
In relativistic quantum mechanics and quantum field theory, the Bargmann–Wigner equations describe free particles with non-zero mass and arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields.
In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In orbital mechanics, Gauss's method is used for preliminary orbit determination from at least three observations of the orbiting body of interest at three different times. The required information are the times of observations, the position vectors of the observation points, the direction cosine vector of the orbiting body from the observation points and general physical data.
On September 4, the MESSENGER team announced that it would not need to implement a scheduled maneuver to adjust the probe's trajectory. This is the fourth time this year that such a maneuver has been called off. The reason? A recently implemented navigational technique that makes use of solar-radiation pressure (SRP) to guide the probe has been extremely successful at maintaining MESSENGER on a trajectory that will carry it over the cratered surface of Mercury for a second time on October 6.