Modeling and simulation

Last updated

Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making. [1] [2]

Contents

In the computer application of modeling and simulation a computer is used to build a mathematical model which contains key parameters of the physical model. The mathematical model represents the physical model in virtual form, and conditions are applied that set up the experiment of interest. The simulation starts – i.e., the computer calculates the results of those conditions on the mathematical model – and outputs results in a format that is either machine- or human-readable, depending upon the implementation.

The use of M&S within engineering is well recognized. Simulation technology belongs to the tool set of engineers of all application domains and has been included in the body of knowledge of engineering management. M&S helps to reduce costs, increase the quality of products and systems, and document and archive lessons learned. Because the results of a simulation are only as good as the underlying model(s), engineers, operators, and analysts must pay particular attention to its construction. To ensure that the results of the simulation are applicable to the real world, the user must understand the assumptions, conceptualizations, and constraints of its implementation. Additionally, models may be updated and improved using results of actual experiments. M&S is a discipline on its own. Its many application domains often lead to the assumption that M&S is a pure application. This is not the case and needs to be recognized by engineering management in the application of M&S.

The use of such mathematical models and simulations avoids actual experimentation, which can be costly and time-consuming. Instead, mathematical knowledge and computational power is used to solve real-world problems cheaply and in a time efficient manner. As such, M&S can facilitate understanding a system's behavior without actually testing the system in the real world. For example, to determine which type of spoiler would improve traction the most while designing a race car, a computer simulation of the car could be used to estimate the effect of different spoiler shapes on the coefficient of friction in a turn. Useful insights about different decisions in the design could be gleaned without actually building the car. In addition, simulation can support experimentation that occurs totally in software, or in human-in-the-loop environments where simulation represents systems or generates data needed to meet experiment objectives. Furthermore, simulation can be used to train persons using a virtual environment that would otherwise be difficult or expensive to produce.

Interest in simulations

Technically, simulation is well accepted. The 2006 National Science Foundation (NSF) Report on "Simulation-based Engineering Science" [3] showed the potential of using simulation technology and methods to revolutionize the engineering science. Among the reasons for the steadily increasing interest in simulation applications are the following:

  1. Using simulations is generally cheaper, safer and sometimes more ethical than conducting real-world experiments. For example, supercomputers are sometimes used to simulate the detonation of nuclear devices and their effects in order to support better preparedness in the event of a nuclear explosion. [4] Similar efforts are conducted to simulate hurricanes and other natural catastrophes. [5] [6] [7]
  2. Simulations can often be even more realistic than traditional experiments, as they allow the free configuration of the realistic range of environment parameters found in the operational application field of the final product. Examples are supporting deep water operation of the US Navy or the simulating the surface of neighbored planets in preparation of NASA missions.
  3. Simulations can often be conducted faster than real time. This allows using them for efficient if-then-else analyses of different alternatives, in particular when the necessary data to initialize the simulation can easily be obtained from operational data. This use of simulation adds decision support simulation systems to the tool box of traditional decision support systems.
  4. Simulations allow setting up a coherent synthetic environment that allows for integration of simulated systems in the early analysis phase via mixed virtual systems with first prototypical components to a virtual test environment for the final system. If managed correctly, the environment can be migrated from the development and test domain to the training and education domain in follow-on life cycle phases for the systems (including the option to train and optimize a virtual twin of the real system under realistic constraints even before first components are being built).

The military and defense domain, in particular within the United States, has been the main M&S champion, in form of funding as well as application of M&S. E.g., M&S in modern military organizations is part of the acquisition/procurement strategy. Specifically, M&S is used to conduct Events and Experiments that influence requirements and training for military systems. As such, M&S is considered an integral part of systems engineering of military systems. Other application domains, however, are currently catching up. M&S in the fields of medicine, transportation, and other industries is poised to rapidly outstrip DoD's use of M&S in the years ahead, if it hasn't already happened. [8]

Simulation in science

Modeling and simulation are important in research. Representing the real systems either via physical reproductions at smaller scale, or via mathematical models that allow representing the dynamics of the system via simulation, allows exploring system behavior in an articulated way which is often either not possible, or too risky in the real world.

How modeling extends the scientific method at the base of research Modeling in science.PNG
How modeling extends the scientific method at the base of research

As an emerging discipline

"The emerging discipline of M&S is based on developments in diverse computer science areas as well as influenced by developments in Systems Theory, Systems Engineering, Software Engineering, Artificial Intelligence, and more. This foundation is as diverse as that of engineering management and brings elements of art, engineering, and science together in a complex and unique way that requires domain experts to enable appropriate decisions when it comes to application or development of M&S technology in the context of this paper. The diversity and application-oriented nature of this new discipline sometimes result in the challenge, that the supported application domains themselves already have vocabularies in place that are not necessarily aligned between disjunctive domains. A comprehensive and concise representation of concepts, terms, and activities is needed that make up a professional Body of Knowledge for the M&S discipline. Due to the broad variety of contributors, this process is still ongoing." [9]

Padilla et al. recommend in "Do we Need M&S Science" to distinguish between M&S Science, Engineering, and Applications. [10]

Models can be composed of different units (models at finer granularity) linked to achieving a specific goal; for this reason they can be also called modeling solutions.

More generally, modeling and simulation is a key enabler for systems engineering activities as the system representation in a computer readable (and possibly executable) model enables engineers to reproduce the system (or Systems of System) behavior. A collection of applicative modeling and simulation method to support systems engineering activities in provided in. [11]

Application domains

There are many categorizations possible, but the following taxonomy has been very successfully used in the defense domain, and is currently applied to medical simulation and transportation simulation as well.

A special use of Analyses Support is applied to ongoing business operations. Traditionally, decision support systems provide this functionality. Simulation systems improve their functionality by adding the dynamic element and allow to compute estimates and predictions, including optimization and what-if analyses.

Individual concepts

Although the terms "modeling" and "simulation" are often used as synonyms within disciplines applying M&S exclusively as a tool, within the discipline of M&S both are treated as individual and equally important concepts. Modeling is understood as the purposeful abstraction of reality, resulting in the formal specification of a conceptualization and underlying assumptions and constraints. M&S is in particular interested in models that are used to support the implementation of an executable version on a computer. The execution of a model over time is understood as the simulation. While modeling targets the conceptualization, simulation challenges mainly focus on implementation, in other words, modeling resides on the abstraction level, whereas simulation resides on the implementation level.

Conceptualization and implementation – modeling and simulation – are two activities that are mutually dependent, but can nonetheless be conducted by separate individuals. Management and engineering knowledge and guidelines are needed to ensure that they are well connected. Like an engineering management professional in systems engineering needs to make sure that the systems design captured in a systems architecture is aligned with the systems development, this task needs to be conducted with the same level of professionalism for the model that has to be implemented as well. As the role of big data and analytics continues to grow, the role of combined simulation of analysis is the realm of yet another professional called a simplest – in order to blend algorithmic and analytic techniques through visualizations available directly to decision makers. A study designed for the Bureau of Labor and Statistics [12] by Lee et al. provides an interesting look at how bootstrap techniques (statistical analysis) were used with simulation to generate population data where there existed none.

Academic programs

Modeling and Simulation has only recently become an academic discipline of its own. Formerly, those working in the field usually had a background in engineering.

The following institutions offer degrees in Modeling and Simulation:

Ph D. Programs
Masters Programs
Professional Science Masters Programs
Graduate Certificate Programs
Undergraduate Programs

Modeling and Simulation Body of Knowledge

The Modeling and Simulation Body of Knowledge (M&S BoK) is the domain of knowledge (information) and capability (competency) that identifies the modeling and simulation community of practice and the M&S profession, industry, and market. [13]

The M&S BoK Index is a set of pointers providing handles so that subject information content can be denoted, identified, accessed, and manipulated. [13]

Summary

Three activities have to be conducted and orchestrated to ensure success:

  1. a model must be produced that captures formally the conceptualization,
  2. a simulation must implement this model, and
  3. management must ensure that model and simulation are interconnected and on the current state (which means that normally the model needs to be updated in case the simulation is changed as well).

See also

Related Research Articles

<span class="mw-page-title-main">Control engineering</span> Engineering discipline that deals with control systems

Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world.

<span class="mw-page-title-main">Systems engineering</span> Interdisciplinary field of engineering

Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

<span class="mw-page-title-main">Simulation</span> Imitation of the operation of a real-world process or system over time

A simulation is an imitative representation of a process or system that could exist in the real world. In this broad sense, simulation can often be used interchangeably with model. Sometimes a clear distinction between the two terms is made, in which simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Another way to distinguish between the terms is to define simulation as experimentation with the help of a model. This definition includes time-independent simulations. Often, computers are used to execute the simulation.

A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language.

<span class="mw-page-title-main">Computer simulation</span> Process of mathematical modelling, performed on a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

<span class="mw-page-title-main">Crowd simulation</span> Model of movement

Crowd simulation is the process of simulating the movement of a large number of entities or characters. It is commonly used to create virtual scenes for visual media like films and video games, and is also used in crisis training, architecture and urban planning, and evacuation simulation.

An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

Computational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science that uses advanced computing capabilities to understand and solve complex physical problems. This includes

<span class="mw-page-title-main">Scientific modelling</span> Scientific activity that produces models

Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features. Different types of models may be used for different purposes, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, computational models to simulate, and graphical models to visualize the subject.

Neuroergonomics is the application of neuroscience to ergonomics. Traditional ergonomic studies rely predominantly on psychological explanations to address human factors issues such as: work performance, operational safety, and workplace-related risks. Neuroergonomics, in contrast, addresses the biological substrates of ergonomic concerns, with an emphasis on the role of the human nervous system.

<span class="mw-page-title-main">Computational engineering</span>

Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. Computational engineering uses computers to solve engineering design problems important to a variety of industries. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.

In computer science, fault injection is a testing technique for understanding how computing systems behave when stressed in unusual ways. This can be achieved using physical- or software-based means, or using a hybrid approach. Widely studied physical fault injections include the application of high voltages, extreme temperatures and electromagnetic pulses on electronic components, such as computer memory and central processing units. By exposing components to conditions beyond their intended operating limits, computing systems can be coerced into mis-executing instructions and corrupting critical data.

Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mock up of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome.

Dylan Schmorrow is an American scientist and retired United States Defense Official. He is currently the chief scientist at Soar Technology, Inc.. He is a retired US Navy captain, and served as the deputy director of the Human Performance, Training, and BioSystems Research Directorate at the Office of the Assistant Secretary of Defense, Research & Engineering at Office of the Secretary of Defense. He was also specialty leader of the Aerospace Experimental Psychologist community and an acquisition professional in the Naval Acquisition Corps.

<span class="mw-page-title-main">Emulator</span> System allowing a device to imitate another

In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device.

Live, Virtual, & Constructive (LVC) Simulation is a broadly used taxonomy for classifying Modeling and Simulation (M&S). However, categorizing a simulation as a live, virtual, or constructive environment is problematic since there is no clear division among these categories. The degree of human participation in a simulation is infinitely variable, as is the degree of equipment realism. The categorization of simulations also lacks a category for simulated people working real equipment.

In mathematical modeling, deterministic simulations contain no random variables and no degree of randomness, and consist mostly of equations, for example difference equations. These simulations have known inputs and they result in a unique set of outputs. Contrast stochastic (probability) simulation, which includes random variables.

<span class="mw-page-title-main">Message passing in computer clusters</span> Aspect of computer clusters

Message passing is an inherent element of all computer clusters. All computer clusters, ranging from homemade Beowulfs to some of the fastest supercomputers in the world, rely on message passing to coordinate the activities of the many nodes they encompass. Message passing in computer clusters built with commodity servers and switches is used by virtually every internet service.

References

  1. "Department of Defense INSTRUCTION NUMBER 5000.61: Modeling and Simulation (M&S) Verification, Validation, and Accreditation" (PDF). Department of Defense. 2009-12-09. Archived from the original (PDF) on July 14, 2007.
  2. "Department of Defense DIRECTIVE NUMBER 5000.59: DoD Modeling and Simulation (M&S) Management" (PDF). Department of Defense. 2007-08-08. Archived from the original (PDF) on July 10, 2007.
  3. "Report on Simulation-Based Engineering Science" (PDF). National Science Foundation (NSF) Blue Ribbon Panel. 2006-05-01. Archived (PDF) from the original on 2021-06-07.
  4. George Dvorsky (6 June 2012). "Supercomputer simulates nuclear explosion down to the molecular level". io9. Gawker Media. Archived from the original on 2021-06-07.
  5. "Hurricane Force Supercomputing: Petascale Simulations of Sandy". HPCwire. 15 November 2013. Archived from the original on 2021-06-07.
  6. "NOAA's SciJinks :: Simulate a Hurricane". Archived from the original on 2021-06-07.
  7. "9 Super-Cool Uses for Supercomputers". LiveScience.com. 30 April 2010. Archived from the original on 2021-06-07.
  8. Collins, A.J.; S.R. Shefrey; J. Sokolowski; C.D. Turnitsa; E. Weisel (January 2011). "Modeling and Simulation Standards Study: Healthcare Workshop report". VMASC Report, Suffolk VA.
  9. Tolk, Andreas. "Engineering Management Challenges for Applying Simulation as a Green Technology" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  10. Padilla, Jose; S.Y. Diallo; A. Tolk (October 2011). "Do We Need M&S Science?" (PDF). SCS M&S Magazine (4): 161–166. Archived from the original (PDF) on June 6, 2013. Retrieved July 1, 2012.
  11. Gianni, Daniele; D'Ambrogio, Andrea; Tolk, Andreas, eds. (December 2, 2014). Modeling and Simulation-Based Systems Engineering Handbook (1st ed.). CRC Press. p. 513. ISBN   9781466571457.
  12. Lee, Hyunshik J.; et al. (2013). "Simulation Study to Validate Sample Allocation for the National Compensation Survey" (PDF). JSM 2013 - Survey Research Methods Section. Bureau of Labor Statistics. Archived from the original (PDF) on 2014-05-04.
  13. 1 2 "Waite, W. (2004) "Foundations '04: A Workshop for VV&A in the 21st Century, Session 10: V&V Education Initiatives". Archived from the original on 2011-09-30. Retrieved 2010-10-15.

Further reading