Barometric formula

Last updated

The barometric formula is a formula used to model how the pressure (or density) of the air changes with altitude.

Contents

Pressure equations

Pressure as a function of the height above the sea level Pressure air.svg
Pressure as a function of the height above the sea level

There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : The second equation is applicable to the atmospheric layers in which the temperature is assumed not to vary[ citation needed ] with altitude (lapse rate is null): where:

Or converted to imperial units: [1]

The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. In these equations, g0, M and R* are each single-valued constants, while P, L,T, and h are multivalued constants in accordance with the table below. The values used for M, g0, and R* are in accordance with the U.S. Standard Atmosphere, 1976, and the value for R* in particular does not agree with standard values for this constant. [2] The reference value for Pb for b = 0 is the defined sea level value, P0 = 101 325 Pa or 29.92126 inHg. Values of Pb of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = hb+1. [2]

Subscript bGeopotential

height above MSL (h)

Static pressureStandard temperature
(K)
Temperature lapse rateExponent
g0 M / R L
(m)(ft)(Pa)(inHg)(K/m)(K/ft)
000101 325.0029.92126288.150.00650.00198125.25588
111 00036,08922 632.106.683245216.650.00.0
220 00065,6175474.891.616734216.65-0.001-0.0003048-34.1626
332 000104,987868.020.2563258228.65-0.0028-0.00085344-12.2009
447 000154,199110.910.0327506270.650.00.0
551 000167,32366.940.01976704270.650.00280.0008534412.2009
671 000232,9403.960.00116833214.650.0020.000609617.0813

Density equations

The expressions for calculating density are nearly identical to calculating pressure. The only difference is the exponent in Equation 1.

There are two equations for computing density as a function of height. The first equation is applicable to the standard model of the troposphere in which the temperature is assumed to vary with altitude at a lapse rate of ; the second equation is applicable to the standard model of the stratosphere in which the temperature is assumed not to vary with altitude.

Equation 1:

which is equivalent to the ratio of the relative pressure and temperature changes

Equation 2:

where

or, converted to U.S. gravitational foot-pound-second units (no longer used in U.K.): [1]

The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρb for b = 0 is the defined sea level value, ρ0 = 1.2250 kg/m3 or 0.0023768908 slug/ft3. Values of ρb of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = hb+1. [2]

In these equations, g0, M and R* are each single-valued constants, while ρ, L, T and h are multi-valued constants in accordance with the table below. The values used for M, g0 and R* are in accordance with the U.S. Standard Atmosphere, 1976, and that the value for R* in particular does not agree with standard values for this constant. [2]

Subscript bGeopotential

height above MSL (h)

Mass Density ()Standard Temperature (T')
(K)
Temperature Lapse Rate (L)
(m)(ft)(kg/m3)(slug/ft3)(K/m)(K/ft)
0001.22502.3768908×10−3288.150.00650.0019812
111 00036,089.240.363917.0611703×10−4216.650.00.0
220 00065,616.790.088031.7081572×10−4216.65-0.001-0.0003048
332 000104,986.870.013222.5660735×10−5228.65-0.0028-0.00085344
447 000154,199.480.001432.7698702×10−6270.650.00.0
551 000167,322.830.000861.6717895×10−6270.650.00280.00085344
671 000232,939.630.0000641.2458989×10−7214.650.0020.0006096

Derivation

The barometric formula can be derived using the ideal gas law:

Assuming that all pressure is hydrostatic: and dividing this equation by we get:

Integrating this expression from the surface to the altitude z we get:

Assuming linear temperature change and constant molar mass and gravitational acceleration, we get the first barometric formula:

Instead, assuming constant temperature, integrating gives the second barometric formula:

In this formulation, R* is the gas constant, and the term R*T/Mg gives the scale height (approximately equal to 8.4 km for the troposphere).

(For exact results, it should be remembered that atmospheres containing water do not behave as an ideal gas. See real gas or perfect gas or gas for further understanding.)

See also

Related Research Articles

<span class="mw-page-title-main">Equation of state</span> An equation describing the state of matter under a given set of physical conditions

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for solids and liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

In chemistry and related fields, the molar volume, symbol Vm, or of a substance is the ratio of the volume (V) occupied by a substance to the amount of substance (n), usually at a given temperature and pressure. It is also equal to the molar mass (M) divided by the mass density (ρ):

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s.

Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value, it corresponds to a constant work or potential energy difference of 9.80665 joules.

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks

The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).

<span class="mw-page-title-main">International Standard Atmosphere</span> Atmospheric model

The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes, plus some formulas by which those values were derived. The International Organization for Standardization (ISO) publishes the ISA as an international standard, ISO 2533:1975. Other standards organizations, such as the International Civil Aviation Organization (ICAO) and the United States Government, publish extensions or subsets of the same atmospheric model under their own standards-making authority.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

<span class="mw-page-title-main">Radiation zone</span> Radiative layer of stars

A radiation zone, or radiative region, is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

<span class="mw-page-title-main">Scale height</span> Distance over which a quantity decreases by a factor of e

In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance over which a physical quantity decreases by a factor of e.

Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities. Governmental regulations in many countries require that the probability of such accidental releases be analyzed and their quantitative impact upon the environment and human health be determined so that mitigating steps can be planned and implemented.

<span class="mw-page-title-main">Jeans instability</span> Mechanism by which the collapse of interstellar gas clouds causes star formation

The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. It is named after James Jeans.

<span class="mw-page-title-main">U.S. Standard Atmosphere</span> Static atmospheric model

The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and was updated in 1962, 1966, and 1976. It is largely consistent in methodology with the International Standard Atmosphere, differing mainly in the assumed temperature distribution at higher altitudes.

A reference atmospheric model describes how the ideal gas properties of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc. A static atmospheric model has a more limited domain, excluding time. A standard atmosphere is defined by the World Meteorological Organization as "a hypothetical vertical distribution of atmospheric temperature, pressure and density which, by international agreement, is roughly representative of year-round, midlatitude conditions."

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.

References

  1. 1 2 Mechtly, E. A., 1973: The International System of Units, Physical Constants and Conversion Factors. NASA SP-7012, Second Revision, National Aeronautics and Space Administration, Washington, D.C.
  2. 1 2 3 4 U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976. (Linked file is 17 Mb)