Scale height

Last updated
The earth atmosphere's scale height is about 8.5km, as can be confirmed from this diagram of air pressure p by altitude h: At an altitude of 0, 8.5, and 17 km, the pressure is about 1000, 370, and 140 hPa, respectively. Pressure air.svg
The earth atmosphere's scale height is about 8.5km, as can be confirmed from this diagram of air pressure p by altitude h: At an altitude of 0, 8.5, and 17 km, the pressure is about 1000, 370, and 140 hPa, respectively.

In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance (vertical or radial) over which a physical quantity decreases by a factor of e (the base of natural logarithms, approximately 2.718).

Contents

Scale height used in a simple atmospheric pressure model

For planetary atmospheres, scale height is the increase in altitude for which the atmospheric pressure decreases by a factor of e. The scale height remains constant for a particular temperature. It can be calculated by [1] [2]

or equivalently

where:

The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.

Thus:

where g is the acceleration due to gravity. For small dz it is possible to assume g to be constant; the minus sign indicates that as the height increases the pressure decreases. Therefore, using the equation of state for an ideal gas of mean molecular mass M at temperature T, the density can be expressed as

Combining these equations gives

which can then be incorporated with the equation for H given above to give:

which will not change unless the temperature does. Integrating the above and assuming P0 is the pressure at height z = 0 (pressure at sea level) the pressure at height z can be written as:

This translates as the pressure decreasing exponentially with height. [5]

In Earth's atmosphere, the pressure at sea level P0 averages about 1.01×105 Pa, the mean molecular mass of dry air is 28.964 u and hence m = 28.964 ×1.660×10−27 = 4.808×10−26 kg. As a function of temperature, the scale height of Earth's atmosphere is therefore H/T = k/mg = (1.38/(4.808×9.81))×103 = 29.26 m/K. This yields the following scale heights for representative air temperatures.

These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m3 at sea level to 0.53 = 0.125 g/m3 at 70 km, a factor of 9600, indicating an average scale height of 70/ln(9600) = 7.64 km, consistent with the indicated average air temperature over that range of close to 260 K.

Note:

Planetary examples

Approximate atmospheric scale heights for selected Solar System bodies follow.

Scale height for a thin disk

A schematic depiction of the force balance in a gas disk around a central object, e.g., a star. Scale Height Force Balance.jpg
A schematic depiction of the force balance in a gas disk around a central object, e.g., a star.

For a disk of gas around a condensed central object, such as, for example, a protostar, one can derive a disk scale height which is somewhat analogous to the planetary scale height. We start with a disc of gas that has a mass which is small relative to the central object. We assume that the disc is in hydrostatic equilibrium with the z component of gravity from the star, where the gravity component is pointing to the midplane of the disk:

where:

In the thin disk approximation, and the hydrostatic equilibrium equation is

To determine the gas pressure, one can use the ideal gas law:

with:

Using the ideal gas law and the hydrostatic equilibrium equation, gives:

which has the solution

where is the gas mass density at the midplane of the disk at a distance r from the center of the star and is the disk scale height with

with the solar mass, the astronomical unit and the atomic mass unit.

As an illustrative approximation, if we ignore the radial variation in the temperature, , we see that and that the disk increases in altitude as one moves radially away from the central object.

Due to the assumption that the gas temperature in the disk, T, is independent of z, is sometimes known as the isothermal disk scale height.

Disk scale height in a magnetic field

A magnetic field in a thin gas disk around a central object can change the scale height of the disk. [16] [17] [18] For example, if a non-perfectly conducting disk is rotating through a poloidal magnetic field (i.e., the initial magnetic field is perpendicular to the plane of the disk), then a toroidal (i.e., parallel to the disk plane) magnetic field will be produced within the disk, which will pinch and compress the disk. In this case, the gas density of the disk is: [18]

where the cut-off density has the form

where

These formulae give the maximum height, , of the magnetized disk as

while the e-folding magnetic scale height, , is

See also

Related Research Articles

<span class="mw-page-title-main">Equation of state</span> An equation describing the state of matter under a given set of physical conditions

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, sometimes called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. It is what makes heavenly bodies spherical, in general.

Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value, it corresponds to a constant work or potential energy difference of 9.80665 joules.

The van der Waals equation, named for its originator the Dutch physicist Johannes Diderik van der Waals, is an equation of state that extends the ideal gas law to include the effects of interaction between the gas molecules, as well as their finite size. In doing so, it accounts for the phase change of a substance between its gas and liquid states. It also provides a simple analytic explanation, although only qualitatively, for many of the properties of real substances, a fact that makes it an excellent pedagogic vehicle for study in science and engineering.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).

In astronomy, air mass or airmass is a measure of the amount of air along the line of sight when observing a star or other celestial source from below Earth's atmosphere. It is formulated as the integral of air density along the light ray.

The barometric formula is a formula used to model how the pressure of the air changes with altitude.

The virial expansion is a model of thermodynamic equations of state. This model expresses the pressure P of a gas in local equilibrium as a power series of the density. This equation may be represented in terms of the compressibility factor, , as

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically stable environment. It is named after David Brunt and Vilho Väisälä. It can be used as a measure of atmospheric stratification.

Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities. Governmental regulations in many countries require that the probability of such accidental releases be analyzed and their quantitative impact upon the environment and human health be determined so that mitigating steps can be planned and implemented.

A reference atmospheric model describes how the ideal gas properties of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc. A static atmospheric model has a more limited domain, excluding time. A standard atmosphere is defined by the World Meteorological Organization as "a hypothetical vertical distribution of atmospheric temperature, pressure and density which, by international agreement, is roughly representative of year-round, midlatitude conditions."

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

The hypsometric equation, also known as the thickness equation, relates an atmospheric pressure ratio to the equivalent thickness of an atmospheric layer considering the layer mean of virtual temperature, gravity, and occasionally wind. It is derived from the hydrostatic equation and the ideal gas law.

Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.

<span class="mw-page-title-main">Emden–Chandrasekhar equation</span>

In astrophysics, the Emden–Chandrasekhar equation is a dimensionless form of the Poisson equation for the density distribution of a spherically symmetric isothermal gas sphere subjected to its own gravitational force, named after Robert Emden and Subrahmanyan Chandrasekhar. The equation was first introduced by Robert Emden in 1907. The equation reads

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
Both mechanisms are applied to gravity-capillary waves and have in common that waves are generated by a resonance phenomenon. The Miles mechanism is based on the hypothesis that waves arise as an instability of the sea-atmosphere system. The Phillips mechanism assumes that turbulent eddies in the atmospheric boundary layer induce pressure fluctuations at the sea surface. The Phillips mechanism is generally assumed to be important in the first stages of wave growth, whereas the Miles mechanism is important in later stages where the wave growth becomes exponential in time.

References

  1. "Glossary of Meteorology - scale height". American Meteorological Society (AMS).
  2. "Pressure Scale Height". Wolfram Research.
  3. "2018 CODATA Value: Boltzmann constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  4. "Daniel J. Jacob: "Introduction to Atmospheric Chemistry", Princeton University Press, 1999".
  5. "Example: The scale height of the Earth's atmosphere" (PDF). Archived from the original (PDF) on 2011-07-16.
  6. "Venus Fact Sheet". NASA . Retrieved 28 September 2013.
  7. "Earth Fact Sheet". NASA. Retrieved 28 September 2013.
  8. "Mars Fact Sheet". NASA. Retrieved 28 September 2013.
  9. "Jupiter Fact Sheet". NASA. Archived from the original on 13 October 2011. Retrieved 28 September 2013.
  10. "Saturn Fact Sheet". NASA. Archived from the original on 18 August 2011. Retrieved 28 September 2013.
  11. Justus, C. G.; Aleta Duvall; Vernon W. Keller (1 August 2003). "Engineering-Level Model Atmospheres For Titan and Mars". International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal, October 6–9, 2003, Proceedings: ESA SP-544. ESA. Retrieved 28 September 2013.
  12. "Uranus Fact Sheet". NASA. Retrieved 28 September 2013.
  13. "Neptune Fact Sheet". NASA. Retrieved 28 September 2013.
  14. "Pluto Fact Sheet". NASA. Retrieved 2020-09-28.
  15. "2018 CODATA Value: Newtonian constant of gravitation". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  16. Lovelace, R.V.E.; Mehanian, C.; Mobarry, C. M.; Sulkanen, M. E. (September 1986). "Theory of Axisymmetric Magnetohydrodynamic Flows: Disks". Astrophysical Journal Supplement. 62: 1. Bibcode:1986ApJS...62....1L. doi: 10.1086/191132 . Retrieved 26 January 2022.
  17. Campbell, C. G.; Heptinstall, P. M. (August 1998). "Disc structure around strongly magnetic accretors: a full disc solution with turbulent diffusivity". Monthly Notices of the Royal Astronomical Society. 299 (1): 31. Bibcode:1998MNRAS.299...31C. doi: 10.1046/j.1365-8711.1998.01576.x .
  18. 1 2 Liffman, Kurt; Bardou, Anne (October 1999). "A magnetic scaleheight: the effect of toroidal magnetic fields on the thickness of accretion discs". Monthly Notices of the Royal Astronomical Society. 309 (2): 443. Bibcode:1999MNRAS.309..443L. doi: 10.1046/j.1365-8711.1999.02852.x .