This article needs additional citations for verification .(March 2022) |
A physical quantity (or simply quantity) [1] [lower-alpha 1] is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement . For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value and unit, direction or orientation in space.
Following ISO 80000-1, [1] any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity. The value of a physical quantity Z is expressed as the product of a numerical value {Z} (a pure number) and a unit [Z]:
For example, let be "2 metres"; then, is the numerical value and is the unit. Conversely, the numerical value expressed in an arbitrary unit can be obtained as:
The multiplication sign is usually left out, just as it is left out between variables in the scientific notation of formulas. The convention used to express quantities is referred to as quantity calculus . In formulas, the unit [Z] can be treated as if it were a specific magnitude of a kind of physical dimension: see Dimensional analysis for more on this treatment.
International recommendations for the use of symbols for quantities are set out in ISO/IEC 80000, the IUPAP red book and the IUPAC green book. For example, the recommended symbol for the physical quantity "mass" is m, and the recommended symbol for the quantity "electric charge" is Q.
Physical quantities are normally typeset in italics. Purely numerical quantities, even those denoted by letters, are usually printed in roman (upright) type, though sometimes in italics. Symbols for elementary functions (circular trigonometric, hyperbolic, logarithmic etc.), changes in a quantity like Δ in Δy or operators like d in dx, are also recommended to be printed in roman type.
Examples:
A scalar is a physical quantity that has magnitude but no direction. Symbols for physical quantities are usually chosen to be a single letter of the Latin or Greek alphabet, and are printed in italic type.
Vectors are physical quantities that possess both magnitude and direction and whose operations obey the axioms of a vector space. Symbols for physical quantities that are vectors are in bold type, underlined or with an arrow above. For example, if u is the speed of a particle, then the straightforward notations for its velocity are u, u, or .
Scalars and vectors are the simplest tensors, which can be used to describe more general physical quantities. For example, the Cauchy stress tensor possesses magnitude, direction, and orientation qualities.
The notion of dimension of a physical quantity was introduced by Joseph Fourier in 1822. [2] By convention, physical quantities are organized in a dimensional system built upon base quantities, each of which is regarded as having its own dimension.
There is often a choice of unit, though SI units are usually used in scientific contexts due to their ease of use, international familiarity and prescription. For example, a quantity of mass might be represented by the symbol m, and could be expressed in the units kilograms (kg), pounds (lb), or daltons (Da).
Dimensional homogeneity is not necessarily sufficient for quantities to be comparable; [1] for example, both kinematic viscosity and thermal diffusivity have dimension of square length per time (in units of m2/s). Quantities of the same kind share extra commonalities beyond their dimension and units allowing their comparison; for example, not all dimensionless quantities are of the same kind. [1]
A systems of quantities relates physical quantities, and due to this dependence, a limited number of quantities can serve as a basis in terms of which the dimensions of all the remaining quantities of the system can be defined. A set of mutually independent quantities may be chosen by convention to act as such a set, and are called base quantities. The seven base quantities of the International System of Quantities (ISQ) and their corresponding SI units and dimensions are listed in the following table. [3] : 136 Other conventions may have a different number of base units (e.g. the CGS and MKS systems of units).
Quantity | SI unit | Dimension symbol | ||
---|---|---|---|---|
Name(s) | (Common) symbol(s) | Name | Symbol | |
Length | l, x, r | metre | m | L |
Time | t | second | s | T |
Mass | m | kilogram | kg | M |
Thermodynamic temperature | T | kelvin | K | Θ |
Amount of substance | n | mole | mol | N |
Electric current | i, I | ampere | A | I |
Luminous intensity | Iv | candela | cd | J |
The angular quantities, plane angle and solid angle, are defined as derived dimensionless quantities in the SI. For some relations, their units radian and steradian can be written explicitly to emphasize the fact that the quantity involves plane or solid angles. [3] : 137
Derived quantities are those whose definitions are based on other physical quantities (base quantities).
Important applied base units for space and time are below. Area and volume are thus, of course, derived from the length, but included for completeness as they occur frequently in many derived quantities, in particular densities.
Quantity | SI unit | Dimensions | |
---|---|---|---|
Description | Symbols | ||
(Spatial) position (vector) | r, R, a, d | m | L |
Angular position, angle of rotation (can be treated as vector or scalar) | θ, θ | rad | None |
Area, cross-section | A, S, Ω | m2 | L2 |
Vector area (Magnitude of surface area, directed normal to tangential plane of surface) | m2 | L2 | |
Volume | τ, V | m3 | L3 |
Important and convenient derived quantities such as densities, fluxes, flows, currents are associated with many quantities. Sometimes different terms such as current density and flux density, rate, frequency and current, are used interchangeably in the same context; sometimes they are used uniquely.
To clarify these effective template-derived quantities, we use q to stand for any quantity within some scope of context (not necessarily base quantities) and present in the table below some of the most commonly used symbols where applicable, their definitions, usage, SI units and SI dimensions – where [q] denotes the dimension of q.
For time derivatives, specific, molar, and flux densities of quantities, there is no one symbol; nomenclature depends on the subject, though time derivatives can be generally written using overdot notation. For generality we use qm, qn, and F respectively. No symbol is necessarily required for the gradient of a scalar field, since only the nabla/del operator ∇ or grad needs to be written. For spatial density, current, current density and flux, the notations are common from one context to another, differing only by a change in subscripts.
For current density, is a unit vector in the direction of flow, i.e. tangent to a flowline. Notice the dot product with the unit normal for a surface, since the amount of current passing through the surface is reduced when the current is not normal to the area. Only the current passing perpendicular to the surface contributes to the current passing through the surface, no current passes in the (tangential) plane of the surface.
The calculus notations below can be used synonymously.
If X is a n-variable function , then
Differential The differential n-space volume element is ,
Quantity | Typical symbols | Definition | Meaning, usage | Dimensions |
---|---|---|---|---|
Quantity | q | q | Amount of a property | [q] |
Rate of change of quantity, time derivative | Rate of change of property with respect to time | [q]T−1 | ||
Quantity spatial density | ρ = volume density (n = 3), σ = surface density (n = 2), λ = linear density (n = 1) No common symbol for n-space density, here ρn is used. | Amount of property per unit n-space (length, area, volume or higher dimensions) | [q]L−n | |
Specific quantity | qm | Amount of property per unit mass | [q]M−1 | |
Molar quantity | qn | Amount of property per mole of substance | [q]N−1 | |
Quantity gradient (if q is a scalar field). | Rate of change of property with respect to position | [q]L−1 | ||
Spectral quantity (for EM waves) | qv, qν, qλ | Two definitions are used, for frequency and wavelength: | Amount of property per unit wavelength or frequency. | [q]L−1 (qλ) [q]T (qν) |
Flux, flow (synonymous) | ΦF, F | Two definitions are used: | Flow of a property though a cross-section/surface boundary. | [q]T−1L−2, [F]L2 |
Flux density | F | Flow of a property though a cross-section/surface boundary per unit cross-section/surface area | [F] | |
Current | i, I | Rate of flow of property through a cross-section/surface boundary | [q]T−1 | |
Current density (sometimes called flux density in transport mechanics) | j, J | Rate of flow of property per unit cross-section/surface area | [q]T−1L−2 | |
Moment of quantity | m, M | k-vector q:
| Quantity at position r has a moment about a point or axes, often relates to tendency of rotation or potential energy. | [q]L |
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measurement and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to conversion of units from one dimensional unit to another, which can be used to evaluate scientific formulae.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
Flux describes any effect that appears to pass or travel through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.
The angular displacement – also called angle of rotation, rotational displacement, or rotary displacement – of a physical body is the angle through which the body rotates around a centre or axis of rotation. Angular displacement may be signed, indicating the sense of rotation ; it may also be greater than a full turn.
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
In mathematics, the cross product or vector product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space, and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.
Gaussian units constitute a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of cgs with conflicting definitions of electromagnetic quantities and units.
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O, and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from O to P. In other words, it is the displacement or translation that maps the origin to P:
ISO 31-0 is the introductory part of international standard ISO 31 on quantities and units. It provides guidelines for using physical quantities, quantity and unit symbols, and coherent unit systems, especially the SI. It was intended for use in all fields of science and technology and is augmented by more specialized conventions defined in other parts of the ISO 31 standard. ISO 31-0 was withdrawn on 17 November 2009. It is superseded by ISO 80000-1. Other parts of ISO 31 have also been withdrawn and replaced by parts of ISO 80000.
Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.
The number density is an intensive quantity used to describe the degree of concentration of countable objects in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density. Population density is an example of areal number density. The term number concentration is sometimes used in chemistry for the same quantity, particularly when comparing with other concentrations.
In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.
The International System of Quantities (ISQ) is a standard system of quantities used in physics and in modern science in general. It includes basic quantities such as length and mass and the relationships between those quantities. This system underlies the International System of Units (SI) but does not itself determine the units of measurement used for the quantities.
A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement.