**Measurement** is the numerical quantification of the attributes of an object or event, which can be used to compare with other objects or events.^{ [1] }^{ [2] } The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the *International vocabulary of metrology* published by the International Bureau of Weights and Measures.^{ [2] } However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.^{ [1] }^{ [3] }

- Methodology
- Standardization of measurement units
- Standards
- Units and systems
- Imperial and US customary systems
- Metric system
- Length
- Some special names
- Building trades
- Surveyor's trade
- Time
- Mass
- Economics
- Survey research
- Exactness designation
- Difficulties
- Definitions and theories
- Classical definition
- Representational theory
- Information theory
- Quantum mechanics
- Biology
- See also
- References
- External links

Measurement is a cornerstone of trade, science, technology, and quantitative research in many disciplines. Historically, many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields. Often these were achieved by local agreements between trading partners or collaborators. Since the 18th century, developments progressed towards unifying, widely accepted standards that resulted in the modern International System of Units (SI). This system reduces all physical measurements to a mathematical combination of seven base units. The science of measurement is pursued in the field of metrology.

The measurement of a property may be categorized by the following criteria: type, magnitude, unit, and uncertainty.^{[ citation needed ]} They enable unambiguous comparisons between measurements.

- The
*level*of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio, difference, or ordinal preference. The type is commonly not explicitly expressed, but implicit in the definition of a measurement procedure. - The
*magnitude*is the numerical value of the characterization, usually obtained with a suitably chosen measuring instrument. - A
*unit*assigns a mathematical weighting factor to the magnitude that is derived as a ratio to the property of an artifact used as standard or a natural physical quantity. - An
*uncertainty*represents the random and systemic errors of the measurement procedure; it indicates a confidence level in the measurement. Errors are evaluated by methodically repeating measurements and considering the accuracy and precision of the measuring instrument.

Measurements most commonly use the International System of Units (SI) as a comparison framework. The system defines seven fundamental units: kilogram, metre, candela, second, ampere, kelvin, and mole. Six of these units are defined without reference to a particular physical object which serves as a standard (artifact-free), while the kilogram is still embodied in an artifact which rests at the headquarters of the International Bureau of Weights and Measures in Sèvres near Paris. Artifact-free definitions fix measurements at an exact value related to a physical constant or other invariable phenomena in nature, in contrast to standard artifacts which are subject to deterioration or destruction. Instead, the measurement unit can only ever change through increased accuracy in determining the value of the constant it is tied to.

The first proposal to tie an SI base unit to an experimental standard independent of fiat was by Charles Sanders Peirce (1839–1914),^{ [4] } who proposed to define the metre in terms of the wavelength of a spectral line.^{ [5] } This directly influenced the Michelson–Morley experiment; Michelson and Morley cite Peirce, and improve on his method.^{ [6] }

With the exception of a few fundamental quantum constants, units of measurement are derived from historical agreements. Nothing inherent in nature dictates that an inch has to be a certain length, nor that a mile is a better measure of distance than a kilometre. Over the course of human history, however, first for convenience and then for necessity, standards of measurement evolved so that communities would have certain common benchmarks. Laws regulating measurement were originally developed to prevent fraud in commerce.

Units of measurement are generally defined on a scientific basis, overseen by governmental or independent agencies, and established in international treaties, pre-eminent of which is the General Conference on Weights and Measures (CGPM), established in 1875 by the Metre Convention, overseeing the International System of Units (SI). For example, the metre was redefined in 1983 by the CGPM in terms of the speed of light, the kilogram was redefined in 2019 in terms of the Planck constant and the international yard was defined in 1960 by the governments of the United States, United Kingdom, Australia and South Africa as being *exactly* 0.9144 metres.

In the United States, the National Institute of Standards and Technology (NIST), a division of the United States Department of Commerce, regulates commercial measurements. In the United Kingdom, the role is performed by the National Physical Laboratory (NPL), in Australia by the National Measurement Institute,^{ [7] } in South Africa by the Council for Scientific and Industrial Research and in India the National Physical Laboratory of India.

Before SI units were widely adopted around the world, the British systems of English units and later imperial units were used in Britain, the Commonwealth and the United States. The system came to be known as U.S. customary units in the United States and is still in use there and in a few Caribbean countries. These various systems of measurement have at times been called *foot-pound-second* systems after the Imperial units for length, weight and time even though the tons, hundredweights, gallons, and nautical miles, for example, are different for the U.S. units. Many Imperial units remain in use in Britain, which has officially switched to the SI system—with a few exceptions such as road signs, which are still in miles. Draught beer and cider must be sold by the imperial pint, and milk in returnable bottles can be sold by the imperial pint. Many people measure their height in feet and inches and their weight in stone and pounds, to give just a few examples. Imperial units are used in many other places, for example, in many Commonwealth countries that are considered metricated, land area is measured in acres and floor space in square feet, particularly for commercial transactions (rather than government statistics). Similarly, gasoline is sold by the gallon in many countries that are considered metricated.

The metric system is a decimal system of measurement based on its units for length, the metre and for mass, the kilogram. It exists in several variations, with different choices of base units, though these do not affect its day-to-day use. Since the 1960s, the International System of Units (SI) is the internationally recognised metric system. Metric units of mass, length, and electricity are widely used around the world for both everyday and scientific purposes.

The International System of Units (abbreviated as SI from the French language name *Système International d'Unités*) is the modern revision of the metric system. It is the world's most widely used system of units, both in everyday commerce and in science. The SI was developed in 1960 from the metre–kilogram–second (MKS) system, rather than the centimetre–gram–second (CGS) system, which, in turn, had many variants. The SI units for the seven base physical quantities are:^{ [8] }

Base quantity | Base unit | Symbol | Defining constant |
---|---|---|---|

time | second | s | hyperfine splitting in caesium-133 |

length | metre | m | speed of light, c |

mass | kilogram | kg | Planck constant, h |

electric current | ampere | A | elementary charge, e |

temperature | kelvin | K | Boltzmann constant, k |

amount of substance | mole | mol | Avogadro constant N_{A} |

luminous intensity | candela | cd | luminous efficacy of a 540 THz source K_{cd} |

In the SI, base units are the simple measurements for time, length, mass, temperature, amount of substance, electric current and light intensity. Derived units are constructed from the base units, for example, the watt, i.e. the unit for power, is defined from the base units as m^{2}·kg·s^{−3}. Other physical properties may be measured in compound units, such as material density, measured in kg/m^{3}.

The SI allows easy multiplication when switching among units having the same base but different prefixes. To convert from metres to centimetres it is only necessary to multiply the number of metres by 100, since there are 100 centimetres in a metre. Inversely, to switch from centimetres to metres one multiplies the number of centimetres by 0.01 or divides the number of centimetres by 100.

A ruler or rule is a tool used in, for example, geometry, technical drawing, engineering, and carpentry, to measure lengths or distances or to draw straight lines. Strictly speaking, the *ruler* is the instrument used to **rule** straight lines and the calibrated instrument used for determining length is called a *measure*, however common usage calls both instruments *rulers* and the special name *straightedge* is used for an unmarked rule. The use of the word *measure*, in the sense of a measuring instrument, only survives in the phrase *tape measure*, an instrument that can be used to measure but cannot be used to draw straight lines. As can be seen in the photographs on this page, a two-metre carpenter's rule can be folded down to a length of only 20 centimetres, to easily fit in a pocket, and a five-metre-long tape measure easily retracts to fit within a small housing.

Some non-systematic names are applied for some multiples of some units.

- 100 kilograms = 1 quintal; 1000 kilogram = 1 metric tonne;
- 10 years = 1 decade; 100 years = 1 century; 1000 years = 1 millennium

The Australian building trades adopted the metric system in 1966 and the units used for measurement of length are metres (m) and millimetres (mm). Centimetres (cm) are avoided as they cause confusion when reading plans. For example, the length two and a half metres is usually recorded as 2500 mm or 2.5 m; it would be considered non-standard to record this length as 250 cm.^{ [9] }^{ [10] }

American surveyors use a decimal-based system of measurement devised by Edmund Gunter in 1620. The base unit is Gunter's chain of 66 feet (20 m) which is subdivided into 4 rods, each of 16.5 ft or 100 links of 0.66 feet. A link is abbreviated "lk", and links "lks", in old deeds and land surveys done for the government.

The *Standard Method of Measurement* (SMM) published by the Royal Institution of Chartered Surveyors (RICS) consisted of classification tables and rules of measurement, allowing use of a uniform basis for measuring building works. It was first published in 1922, superseding a Scottish Standard Method of Measurement which had been published in 1915. Its seventh edition (SMM7) was first published in 1988 and revised in 1998. SMM7 was replaced by the *New Rules of Measurement*, volume 2 (NRM2), which were published in April 2012 by the RICS Quantity Surveying and Construction Professional Group and became operational on 1 January 2013.^{ [11] } NRM2 has been in general use since July 2013.

SMM7 was accompanied by the Code of Procedure for the Measurement of Building Works (the SMM7 Measurement Code). Whilst SMM7 could have a contractual status within a project, for example in the JCT Standard form of Building Contract), the Measurement Code was not mandatory.^{ [12] }

NRM2 Is the second of three component parts within the NRM suite:

- NRM1 - Order of cost estimating and cost planning for capital building works
- NRM2 - Detailed measurement for building works
- NRM3 - Order of cost estimating and cost planning for building maintenance works.
^{ [13] }

Time is an abstract measurement of elemental changes over a non spatial continuum. It is denoted by numbers and/or named periods such as hours, days, weeks, months and years. It is an apparently irreversible series of occurrences within this non spatial continuum. It is also used to denote an interval between two relative points on this continuum.

*Mass* refers to the intrinsic property of all material objects to resist changes in their momentum. *Weight*, on the other hand, refers to the downward force produced when a mass is in a gravitational field. In free fall, (no net gravitational forces) objects lack weight but retain their mass. The Imperial units of mass include the ounce, pound, and ton. The metric units gram and kilogram are units of mass.

One device for measuring weight or mass is called a weighing scale or, often, simply a *scale*. A spring scale measures force but not mass, a balance compares weight, both require a gravitational field to operate. Some of the most accurate instruments for measuring weight or mass are based on load cells with a digital read-out, but require a gravitational field to function and would not work in free fall.

The measures used in economics are physical measures, nominal price value measures and real price measures. These measures differ from one another by the variables they measure and by the variables excluded from measurements.

In the field of survey research, measures are taken from individual attitudes, values, and behavior using questionnaires as a measurement instrument. As all other measurements, measurement in survey research is also vulnerable to measurement error, i.e. the departure from the true value of the measurement and the value provided using the measurement instrument.^{ [14] } In substantive survey research, measurement error can lead to biased conclusions and wrongly estimated effects. In order to get accurate results, when measurement errors appear, the results need to be corrected for measurement errors.

The following rules generally apply for displaying the exactness of measurements:^{ [15] }

- All non-0 digits and any 0s appearing between them are significant for the exactness of any number. For example, the number 12000 has two significant digits, and has implied limits of 11500 and 12500.
- Additional 0s may be added after a decimal separator to denote a greater exactness, increasing the number of decimals. For example, 1 has implied limits of 0.5 and 1.5 whereas 1.0 has implied limits 0.95 and 1.05.

This section does not cite any sources .(July 2017) (Learn how and when to remove this template message) |

Since accurate measurement is essential in many fields, and since all measurements are necessarily approximations, a great deal of effort must be taken to make measurements as accurate as possible. For example, consider the problem of measuring the time it takes an object to fall a distance of one metre (about 39 in). Using physics, it can be shown that, in the gravitational field of the Earth, it should take any object about 0.45 second to fall one metre. However, the following are just some of the sources of error that arise:

- This computation used for the acceleration of gravity 9.8 metres per second squared (32 ft/s
^{2}). But this measurement is not exact, but only precise to two significant digits. - The Earth's gravitational field varies slightly depending on height above sea level and other factors.
- The computation of 0.45 seconds involved extracting a square root, a mathematical operation that required rounding off to some number of significant digits, in this case two significant digits.

Additionally, other sources of experimental error include:

- carelessness,
- determining of the exact time at which the object is released and the exact time it hits the ground,
- measurement of the height and the measurement of the time both involve some error,
- Air resistance.
- posture of human participants
^{ [16] }

Scientific experiments must be carried out with great care to eliminate as much error as possible, and to keep error estimates realistic.

In the classical definition, which is standard throughout the physical sciences, *measurement* is the determination or estimation of ratios of quantities.^{ [17] } Quantity and measurement are mutually defined: quantitative attributes are those possible to measure, at least in principle. The classical concept of quantity can be traced back to John Wallis and Isaac Newton, and was foreshadowed in Euclid's Elements.^{ [17] }

In the representational theory, *measurement* is defined as "the correlation of numbers with entities that are not numbers".^{ [18] } The most technically elaborated form of representational theory is also known as additive conjoint measurement. In this form of representational theory, numbers are assigned based on correspondences or similarities between the structure of number systems and the structure of qualitative systems. A property is quantitative if such structural similarities can be established. In weaker forms of representational theory, such as that implicit within the work of Stanley Smith Stevens,^{ [19] } numbers need only be assigned according to a rule.

The concept of measurement is often misunderstood as merely the assignment of a value, but it is possible to assign a value in a way that is not a measurement in terms of the requirements of additive conjoint measurement. One may assign a value to a person's height, but unless it can be established that there is a correlation between measurements of height and empirical relations, it is not a measurement according to additive conjoint measurement theory. Likewise, computing and assigning arbitrary values, like the "book value" of an asset in accounting, is not a measurement because it does not satisfy the necessary criteria.

Three type of Representational theory

**1) Empirical relation**

In science, an **empirical relationship** is a **relationship** or correlation based solely on observation rather than theory. An **empirical relationship** requires only confirmatory data irrespective of theoretical basis

**2) The rule of mapping**

The real world is the Domain of mapping, and the mathematical world is the range. when we map the attribute to mathematical system, we have many choice for mapping and the range

**3) The representation condition of measurement**

Information theory recognises that all data are inexact and statistical in nature. Thus the definition of measurement is: "A set of observations that reduce uncertainty where the result is expressed as a quantity."^{ [20] } This definition is implied in what scientists actually do when they measure something and report both the mean and statistics of the measurements. In practical terms, one begins with an initial guess as to the expected value of a quantity, and then, using various methods and instruments, reduces the uncertainty in the value. Note that in this view, unlike the positivist representational theory, all measurements are uncertain, so instead of assigning one value, a range of values is assigned to a measurement. This also implies that there is not a clear or neat distinction between estimation and measurement.

In quantum mechanics, a measurement is an action that determines a particular property (position, momentum, energy, etc.) of a quantum system. Before a measurement is made, a quantum system is simultaneously described by all values in a range of possible values, where the probability of measuring each value is determined by the wavefunction of the system. When a measurement is performed, the wavefunction of the quantum system "collapses" to a single, definite value.^{ [21] } The unambiguous meaning of the measurement problem is an unresolved fundamental problem in quantum mechanics.^{[ citation needed ]}

In biology, there is generally no well established theory of measurement. However, the importance of the theoretical context is emphasized.^{ [22] } Moreover, the theoretical context stemming from the theory of evolution leads to articulate the theory of measurement and historicity as a fundamental notion.^{ [23] } Among the most developed fields of measurement in biology are the measurement of genetic diversity and species diversity.^{ [24] }

- Airy points
- Conversion of units
- Detection limit
- Differential linearity
- Dimensional analysis
- Dimensionless number
- Econometrics
- Electrical measurements
- History of measurement
- History of science and technology
- Instrumentation
- Integral linearity
- ISO 10012, Measurement management systems
- Key relevance in locksmithing
- Least count
- Levels of measurement
- List of humorous units of measurement
- List of unusual units of measurement
- Measurement in quantum mechanics
- Measuring instrument
- Measurement (journal)
- Measurement uncertainty
- NCSL International
- Number sense
- Observable quantity
- Orders of magnitude
- Primary instrument
- Psychometrics
- Quantification (science)
- Remote sensing
- Standard (metrology)
- Test method
- Timeline of temperature and pressure measurement technology
- Timeline of time measurement technology
- Uncertainty principle
- Virtual instrumentation
- Web analytics
- Weights and measures

The **kilogram** is the base unit of mass in the International System of Units (SI), the current metric system, having the unit symbol **kg**. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a **kilo** in everyday speech.

The **litre** or **liter** is a metric unit of volume. It is equal to 1 cubic decimetre (dm^{3}), 1000 cubic centimetres (cm^{3}) or 0.001 cubic metre (m^{3}). A cubic decimetre occupies a volume of 10 cm × 10 cm × 10 cm and is thus equal to one-thousandth of a cubic metre.

**Length** is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the International System of Units (SI) system the base unit for length is the metre.

The **International System of Units** is the modern form of the metric system. It is the only system of measurement with an official status in nearly every country in the world. It comprises a coherent system of units of measurement starting with seven base units, which are the second, metre, kilogram, ampere, kelvin, mole, and candela. The system allows for an unlimited number of additional units, called derived units, which can always be represented as products of powers of the base units. Twenty-two derived units have been provided with special names and symbols. The seven base units and the 22 derived units with special names and symbols may be used in combination to express other derived units, which are adopted to facilitate measurement of diverse quantities. The SI system also provides twenty prefixes to the unit names and unit symbols that may be used when specifying power-of-ten multiples and sub-multiples of SI units. The SI is intended to be an evolving system; units and prefixes are created and unit definitions are modified through international agreement as the technology of measurement progresses and the precision of measurements improves.

The **SI base units** are the standard units of measurement defined by the International System of Units (SI) for the seven base quantities of what is now known as the International System of Quantities: they are notably a basic set from which all other SI units can be derived. The units and their physical quantities are the second for time, the metre for measurement of length, the kilogram for mass, the ampere for electric current, the kelvin for temperature, the mole for amount of substance, and the candela for luminous intensity. The SI base units are a fundamental part of modern metrology, and thus part of the foundation of modern science and technology.

A **metric prefix** is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The prefix *kilo-*, for example, may be added to *gram* to indicate *multiplication* by one thousand: one kilogram is equal to one thousand grams. The prefix *milli-*, likewise, may be added to *metre* to indicate *division* by one thousand; one millimetre is equal to one thousandth of a metre.

The **tonne** is a metric unit of mass equal to 1,000 kilograms. It is commonly referred to as a **metric ton** in the United States. It is equivalent to approximately 2,204.6 pounds, 1.102 short tons (US) or approximately 0.984 long tons (UK). The official SI unit is the **megagram**, a less common way to express the same mass.

In science and engineering, the **weight** of an object is the force acting on the object due to gravity.

A **metric system** is a system of measurement that succeeded the decimalised system based on the metre introduced in France in the 1790s. The historical development of these systems culminated in the definition of the International System of Units (SI), under the oversight of an international standards body.

**Metrology** is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in France, when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th Conference Generale des Poids et Mesures (CGPM) in 1960.

The **kilogram-force**, or **kilopond**, is a non-standard gravitational metric unit of force. It is equal to the magnitude of the force exerted on one kilogram of mass in a 9.80665 m/s^{2} gravitational field. That is, it is the weight of a kilogram under standard gravity. Therefore, one kilogram-force is by definition equal to 9.80665 N. Similarly, a gram-force is 9.80665 mN, and a milligram-force is 9.80665 μN.

A **system of measurement** is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Systems of measurement in use include the International System of Units (SI), the modern form of the metric system, the British imperial system, and the United States customary system.

France has a unique history of units of measurement due to the radical decision to invent and adopt the metric system after the French Revolution.

The **gravitational metric system** is a non-standard system of units, which does not comply with the International System of Units (SI). It is built on the three base quantities length, time and force with base units metre, second and kilopond respectively. Internationally used abbreviations of the system are **MKpS**, **MKfS** or **MKS** . However, the abbreviation MKS is also used for the MKS system of units, which, like the SI, uses mass in kilogram as a base unit.

A **unit of measurement** is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement. For example, a length is a physical quantity. The metre is a unit of length that represents a definite predetermined length. When we say 10 metres, we actually mean 10 times the definite predetermined length called "metre". Measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind.

In metrology, a **standard** is an object, system, or experiment that bears a defined relationship to a unit of measurement of a physical quantity. Standards are the fundamental reference for a system of weights and measures, against which all other measuring devices are compared. Historical standards for length, volume, and mass were defined by many different authorities, which resulted in confusion and inaccuracy of measurements. Modern measurements are defined in relationship to internationally standardized reference objects, which are used under carefully controlled laboratory conditions to define the units of length, mass, electrical potential, and other physical quantities.

In 2019, the SI base units were redefined in agreement with the International System of Quantities, effective on the 144th anniversary of the Metre Convention, 20 May 2019. In the redefinition, four of the seven SI base units – the kilogram, ampere, kelvin, and mole – were redefined by setting exact numerical values for the Planck constant, the elementary electric charge, the Boltzmann constant, and the Avogadro constant, respectively. The second, metre, and candela were already defined by physical constants and were not subject to correction to their definitions. The new definitions aimed to improve the SI without changing the value of any units, ensuring continuity with existing measurements. In November 2018, the 26th General Conference on Weights and Measures (CGPM) unanimously approved these changes, which the International Committee for Weights and Measures (CIPM) had proposed earlier that year after determining that previously agreed conditions for the change had been met. These conditions were satisfied by a series of experiments that measured the constants to high accuracy relative to the old SI definitions, and were the culmination of decades of research.

The history of the metric system began during the Age of Enlightenment with measures of length and weight derived from nature, along with their decimal multiples and fractions. The system became the standard of France and Europe within half a century. Other measures with unity ratios were added, and the system went on to be adopted across the world.

The following outline is provided as an overview of and topical guide to the **metric system** – various loosely related systems of measurement that trace their origin to the decimal system of measurement introduced in France during the French Revolution.

A **coherent system of units** is a system of units, used to measure physical quantities, which are defined in such a way that the equations relating the numerical values expressed in the units of the system have exactly the same form, including numerical factors, as the corresponding equations directly relating the quantities. Equivalently, it is a system in which every quantity has a unique unit, or one that does not use conversion factors.

- 1 2 Pedhazur, Elazar J.; Schmelkin, Liora Pedhazur (1991).
*Measurement, Design, and Analysis: An Integrated Approach*(1st ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 15–29. ISBN 978-0-8058-1063-9. - 1 2
*International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM)*(PDF) (3rd ed.). International Bureau of Weights and Measures. 2008. p. 16. - ↑ Kirch, Wilhelm, ed. (2008). "Level of measurement".
*Encyclopedia of Public Health*.**2**. Springer. p. 81. ISBN 978-0-321-02106-9. - ↑ Crease 2011 , pp. 182–4
- ↑ C.S. Peirce (July 1879) "Note on the Progress of Experiments for Comparing a Wave-length with a Metre"
*American Journal of Science*, as referenced by Crease 2011 , p. 203 - ↑ Crease 2011 , p. 203
- ↑ "About Us".
*National Measurement Institute of Australia*. - ↑ International Bureau of Weights and Measures (2019-05-20),
*SI Brochure: The International System of Units (SI)*(PDF) (9th ed.), ISBN 978-92-822-2272-0 - ↑ Wilks, Kevin Joseph. (1992).
*Metrication in Australia : a review of the effectiveness of policies and procedures in Australia's conversion to the metric system*. Australia. Department of Industry, Technology, and Commerce. Canberra: Australian Govt. Pub. Service. p. 94. ISBN 0-644-24860-2. OCLC 27702954. - ↑ "Metrication in Australia" (PDF).
- ↑ RICS, RICS standards and guidance - SMM7: Standard method of measurement of building works, accessed 1 July 2020
- ↑ Designing Buildings Wiki, Standard Method of Measurement, accessed 1 July 2020
- ↑ RICS, NRM, accessed 2 August 2020
- ↑ Groves, Robert (2004).
*Survey Methodology*. New Jersey: Wiley. "By measurement error we mean a departure from the value of the measurement as applied to a sample unit and the value provided. " pp. 51–52 . - ↑ Page 41 in: VanPool, Todd (2011).
*Quantitative analysis in archaeology*. Chichester Malden: Wiley-Blackwell. ISBN 978-1-4443-9017-9. OCLC 811317577. - ↑ Gill, Simeon; Parker, Christopher J. (2017). "Scan posture definition and hip girth measurement: the impact on clothing design and body scanning".
*Ergonomics*.**60**(8): 1123–1136. doi:10.1080/00140139.2016.1251621. PMID 27764997. - 1 2 Michell, J. (1999). Measurement in psychology: a critical history of a methodological concept. New York: Cambridge University Press.
- ↑ Ernest Nagel: "Measurement", Erkenntnis, Volume 2, Number 1 / December 1931, pp. 313–335, published by Springer, the Netherlands
- ↑ Stevens, S.S.
*On the theory of scales and measurement*1946. Science. 103, 677–80. - ↑ Douglas Hubbard: "How to Measure Anything", Wiley (2007), p. 21
- ↑ Penrose, Roger (2007).
*The road to reality : a complete guide to the laws of the universe*. New York: Vintage Books. ISBN 978-0-679-77631-4. "The jumping of the quantum state to one of the eigenstates of**Q**is the process referred to as*state-vector reduction*or*collapse of the wavefunction*. It is one of quantum theory's most puzzling features ..." "[T]he way in which quantum mechanics is used in practice is to take the state indeed to jump in this curious way whenever a measurement is deemed to take place." p 528 Later Chapter 29 is entitled the Measurement paradox. - ↑ Houle, David; Pélabon, Christophe; Wagner, Günter P.; Hansen, Thomas F. (2011). "Measurement and Meaning in Biology" (PDF).
*The Quarterly Review of Biology*.**86**(1): 3–34. doi:10.1086/658408. ISSN 0033-5770. - ↑ Montévil, Maël (2019). "Measurement in biology is methodized by theory".
*Biology & Philosophy*.**34**(3). doi:10.1007/s10539-019-9687-x. ISSN 0169-3867. - ↑ Magurran, A.E. & McGill, B.J. (Hg.) 2011: Biological Diversity: Frontiers in Measurement and Assessment Oxford University Press.

Look up in Wiktionary, the free dictionary. measurement |

Wikiquote has quotations related to: Measurement |

Library resources about Measurement |

- Media related to Measurement at Wikimedia Commons
- Schlaudt, Oliver 2020: "measurement". In: Kirchhoff, Thomas (ed.): Online Encyclopedia Philosophy of Nature. Heidelberg: Universitätsbibliothek Heidelberg, https://doi.org/10.11588/oepn.2020.0.76654.
- Tal, Era 2020: "Measurement in Science". In: Zalta, Edward N. (ed.): The Stanford Encyclopedia of Philosophy (Fall 2020 Edition), URL = <https://plato.stanford.edu/archives/fall2020/entries/measurement-science/>.
- A Dictionary of Units of Measurement
- 'Metrology – in short' 3rd edition, July 2008 ISBN 978-87-988154-5-7

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.