Observation

Last updated
Observing the air traffic in Rouge, Estonia Lennuliiklust uurimas.jpg
Observing the air traffic in Rõuge, Estonia

Observation in the natural sciences [1] is an act or instance of noticing or perceiving [2] and the acquisition of information from a primary source. In living beings, observation employs the senses. In science, observation can also involve the perception and recording of data via the use of scientific instruments. The term may also refer to any data collected during the scientific activity. Observations can be qualitative, that is, the absence or presence of a property is noted and the observed phenomenon described, or quantitative if a numerical value is attached to the observed phenomenon by counting or measuring.

Contents

Science

The scientific method requires observations of natural phenomena to formulate and test hypotheses. [3] It consists of the following steps: [4] [5]

  1. Ask a question about a natural phenomenon
  2. Make observations of the phenomenon
  3. Formulate a hypothesis that tentatively answers the question
  4. Predict logical, observable consequences of the hypothesis that have not yet been investigated
  5. Test the hypothesis' predictions by an experiment, observational study, field study, or simulation
  6. Draw a conclusion from data gathered in the experiment, or revise the hypothesis or form a new one and repeat the process
  7. Write a descriptive method of observation and the results or conclusions reached
  8. Have peers with experience researching the same phenomenon evaluate the results

Observations play a role in the second and fifth steps of the scientific method. However, the need for reproducibility requires that observations by different observers can be comparable. Human sense impressions are subjective and qualitative, making them difficult to record or compare. The use of measurement was developed to allow recording and comparison of observations made at different times and places, by different people. The measurement consists of using observation to compare the phenomenon being observed to a standard unit. The standard unit can be an artifact, process, or definition which can be duplicated or shared by all observers. In measurement, the number of standard units which is equal to the observation is counted. Measurement reduces an observation to a number that can be recorded, and two observations which result in the same number are equal within the resolution of the process.

Human senses are limited and subject to errors in perception, such as optical illusions. Scientific instruments were developed to aid human abilities of observation, such as weighing scales, clocks, telescopes, microscopes, thermometers, cameras, and tape recorders, and also translate into perceptible form events that are unobservable by the senses, such as indicator dyes, voltmeters, spectrometers, infrared cameras, oscilloscopes, interferometers, Geiger counters, and radio receivers.

One problem encountered throughout scientific fields is that the observation may affect the process being observed, resulting in a different outcome than if the process was unobserved. This is called the observer effect . For example, it is not normally possible to check the air pressure in an automobile tire without letting out some of the air, thereby changing the pressure. However, in most fields of science, it is possible to reduce the effects of observation to insignificance by using better instruments.

Considered as a physical process itself, all forms of observation (human or instrumental) involve amplification and are thus thermodynamically irreversible processes, increasing entropy.

Paradoxes

In some specific fields of science, the results of observation differ depending on factors that are not important in everyday observation. These are usually illustrated with apparent "paradoxes" in which an event appears different when observed from two different points of view, seeming to violate "common sense".

Biases

The human senses do not function like a video camcorder, impartially recording all observations. [6] Human perception occurs by a complex, unconscious process of abstraction, in which certain details of the incoming sense data are noticed and remembered, and the rest is forgotten. What is kept and what is thrown away depends on an internal model or representation of the world, called by psychologists a schema , that is built up over our entire lives. The data is fitted into this schema. Later when events are remembered, memory gaps may even be filled by "plausible" data the mind makes up to fit the model; this is called reconstructive memory . How much attention the various perceived data are given depends on an internal value system, which judges how important it is to the individual. Thus two people can view the same event and come away with entirely different perceptions of it, even disagreeing about simple facts. This is why eyewitness testimony is notoriously unreliable.[ citation needed ]

Several of the more important ways observations can be affected by human psychology are given below.

Streetlight effect

Confirmation bias

Human observations are biased toward confirming the observer's conscious and unconscious expectations and view of the world; we "see what we expect to see". [7] In psychology, this is called confirmation bias. [7] Since the object of scientific research is the discovery of new phenomena, this bias can and has caused new discoveries to be overlooked; one example is the discovery of x-rays. It can also result in erroneous scientific support for widely held cultural myths, on the other hand, as in the scientific racism that supported ideas of racial superiority in the early 20th century. [8] Correct scientific technique emphasizes careful recording of observations, separating experimental observations from the conclusions drawn from them, and techniques such as blind or double blind experiments, to minimize observational bias.

Processing bias

Modern scientific instruments can extensively process "observations" before they are presented to the human senses, and particularly with computerized instruments, there is sometimes a question as to where in the data processing chain "observing" ends and "drawing conclusions" begins. This has recently become an issue with digitally enhanced images published as experimental data in papers in scientific journals. The images are enhanced to bring out features that the researcher wants to emphasize, but this also has the effect of supporting the researcher's conclusions. This is a form of bias that is difficult to quantify. Some scientific journals have begun to set detailed standards for what types of image processing are allowed in research results. Computerized instruments often keep a copy of the "raw data" from sensors before processing, which is the ultimate defense against processing bias, and similarly, scientific standards require preservation of the original unenhanced "raw" versions of images used as research data.[ citation needed ]

Philosophy

In Cosmology the origins of observation are related with the origins of evolutions in our cosmos. [9]

Process philosophy is the changing relationships of our senses, minds and experiences to ourselves. [10]

"Observe always that everything is the result of a change, and get used to thinking that there is nothing Nature loves so well as to change existing forms and to make new ones like them."

Meditations. iv. 36. – Marcus Aurelius

See also

Related Research Articles

<span class="mw-page-title-main">Empirical research</span> Research using empirical evidence

Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative form, a researcher can answer empirical questions, which should be clearly defined and answerable with the evidence collected. Research design varies by field and by the question being investigated. Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education.

<span class="mw-page-title-main">Empiricism</span> Idea that knowledge comes only/mainly from sensory experience

In philosophy, empiricism is an epistemological view which holds that true knowledge or justification comes only or primarily from sensory experience and empirical evidence. It is one of several competing views within epistemology, along with rationalism and skepticism. Empiricists argue that empiricism is a more reliable method of finding the truth than purely using logical reasoning, because humans have cognitive biases and limitations which lead to errors of judgement. Empiricism emphasizes the central role of empirical evidence in the formation of ideas, rather than innate ideas or traditions. Empiricists may argue that traditions arise due to relations of previous sensory experiences.

<span class="mw-page-title-main">Statistics</span> Study of the collection and analysis of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

<span class="mw-page-title-main">Scientific method</span> Interplay between observation, experiment, and theory in science

The scientific method is an empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

<span class="mw-page-title-main">Philosophy of science</span>

Philosophy of science is the branch of philosophy concerned with the foundations, methods, and implications of science. Amongst its central questions are the difference between science and non-science, the reliability of scientific theories, and the ultimate purpose and meaning of science as a human endeavour. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of scientific practice, and overlaps with metaphysics, ontology, logic, and epistemology, for example, when it explores the relationship between science and the concept of truth. Philosophy of science is both a theoretical and empirical discipline, relying on philosophical theorising as well as meta-studies of scientific practice. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science.

Reality is the sum or aggregate of all that is real or existent within the universe, as opposed to that which is only imaginary, nonexistent or nonactual. The term is also used to refer to the ontological status of things, indicating their existence. In physical terms, reality is the totality of a system, known and unknown.

<span class="mw-page-title-main">Experiment</span> Scientific procedure performed to validate a hypothesis

An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary greatly in goal and scale but always rely on repeatable procedure and logical analysis of the results. There also exist natural experimental studies.

In philosophy, a noumenon is knowledge posited as an object that exists independently of human sense. The term noumenon is generally used in contrast with, or in relation to, the term phenomenon, which refers to any object of the senses. Immanuel Kant first developed the notion of the noumenon as part of his transcendental idealism, suggesting that while we know the noumenal world to exist because human sensibility is merely receptive, it is not itself sensible and must therefore remain otherwise unknowable to us. In Kantian philosophy, the noumenon is often associated with the unknowable "thing-in-itself". However, the nature of the relationship between the two is not made explicit in Kant's work, and remains a subject of debate among Kant scholars as a result.

<span class="mw-page-title-main">Problem of induction</span> Question of whether inductive reasoning leads to definitive knowledge

The problem of induction is a philosophical problem that questions the rationality of predictions about unobserved things based on previous observations. These inferences from the observed to the unobserved are known as "inductive inferences". David Hume, who first formulated the problem in 1739, argued that there is no non-circular way to justify inductive inferences, while he acknowledged that everyone does and must make such inferences.

Statistical bias, in the mathematical field of statistics, is a systematic tendency in which the methods used to gather data and generate statistics present an inaccurate, skewed or biased depiction of reality. Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their work. Understanding the source of statistical bias can help to assess whether the observed results are close to actuality. Issues of statistical bias has been argued to be closely linked to issues of statistical validity.

A scientific theory is an explanation of an aspect of the natural world and universe that can be repeatedly tested and corroborated in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.

Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law.

<span class="mw-page-title-main">Direct and indirect realism</span> Debate in the philosophy of mind

In the philosophy of perception and philosophy of mind, direct or naïve realism, as opposed to indirect or representational realism, are differing models that describe the nature of conscious experiences; out of the metaphysical question of whether the world we see around us is the real world itself or merely an internal perceptual copy of that world generated by our conscious experience.

<span class="mw-page-title-main">Methodology</span> Study of research methods

In its most common sense, methodology is the study of research methods. However, the term can also refer to the methods themselves or to the philosophical discussion of associated background assumptions. A method is a structured procedure for bringing about a certain goal, like acquiring knowledge or verifying knowledge claims. This normally involves various steps, like choosing a sample, collecting data from this sample, and interpreting the data. The study of methods concerns a detailed description and analysis of these processes. It includes evaluative aspects by comparing different methods. This way, it is assessed what advantages and disadvantages they have and for what research goals they may be used. These descriptions and evaluations depend on philosophical background assumptions. Examples are how to conceptualize the studied phenomena and what constitutes evidence for or against them. When understood in the widest sense, methodology also includes the discussion of these more abstract issues.

<i>Novum Organum</i> Book by Francis Bacon

The Novum Organum, fully Novum Organum, sive Indicia Vera de Interpretatione Naturae or Instaurationis Magnae, Pars II, is a philosophical work by Francis Bacon, written in Latin and published in 1620. The title is a reference to Aristotle's work Organon, which was his treatise on logic and syllogism. In Novum Organum, Bacon details a new system of logic he believes to be superior to the old ways of syllogism. This is now known as the Baconian method.

In the philosophy of science, underdetermination or the underdetermination of theory by data is the idea that evidence available to us at a given time may be insufficient to determine what beliefs we should hold in response to it. The underdetermination thesis says that all evidence necessarily underdetermines any scientific theory.

<span class="mw-page-title-main">Evidence</span> Material supporting an assertion

Evidence for a proposition is what supports the proposition. It is usually understood as an indication that the proposition is true. The exact definition and role of evidence vary across different fields. In epistemology, evidence is what justifies beliefs or what makes it rational to hold a certain doxastic attitude. For example, a perceptual experience of a tree may serve as evidence to justify the belief that there is a tree. In this role, evidence is usually understood as a private mental state. In phenomenology, evidence is limited to intuitive knowledge, often associated with the controversial assumption that it provides indubitable access to truth.

The Romantics, in seeking to understand nature in her living essence, studied the 'father of science', Sir Francis Bacon. The view of Bacon and the 'inductive method' that emerges is quite a different one from that tended to prevail both before and then after, here mainly due to John Stuart Mill's interpretation later in the 1800s. For the Romantics, induction as generally interpreted 'was not enough to produce correct understanding in Bacon's terms.' They saw another side of Bacon, generally not developed, one in which nature was a labyrinth not open to "excellence of wit" nor "chance experiments": "Our steps must be guided by a clue, and see what way from the first perception of the sense must be laid out upon a sure plan."

In the philosophy of science, observations are said to be "theory-laden" when they are affected by the theoretical presuppositions held by the investigator. The thesis of theory-ladenness is most strongly associated with the late 1950s and early 1960s work of Norwood Russell Hanson, Thomas Kuhn, and Paul Feyerabend, and was probably first put forth by Pierre Duhem about 50 years earlier.

References

  1. "Philosophy of Cosmology". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2017.
  2. "Meanings and Definitions of Words at". Dictionary.com. Retrieved 2022-05-13.
  3. Kosso, Peter (2011). A Summary of Scientific Method. Springer. p. 9. ISBN   978-9400716131.
  4. Mendez, Carl Cedrick L.; Heller, H. Craig; Berenbaum, May (2009). Life: The Science of Biology, 9th Ed. US: Macmillan. pp. 13–14. ISBN   978-1429219624.
  5. Shipman, James; Wilson, Jerry D.; Todd, Aaron (2009). Introduction to Physical Science, 12th Ed. Cengage Learning. p. 4. ISBN   978-0538731874.
  6. Shaw, Julia (Aug 12, 2016). "Not all memories happened: What experts wish you knew about false memories". Scientific American. Nature America, Inc. Retrieved August 13, 2016.
  7. 1 2 Shermer, Michael (2002). Why People Believe Weird Things: Pseudoscience, Superstition, and Other Confusions of Our Time. MacMillan. pp. 299–302. ISBN   1429996765.
  8. Gardner, Martin (1957). Fads and Fallacies in the Name of Science. Dover Publications, Inc. pp. 152–163. ISBN   9780486131627.
  9. "Philosophy of Cosmology". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2017.
  10. "Process Philosophy". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2022.