Consequent

Last updated

A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if P implies Q, then P is called the antecedent and Q is called the consequent. [1] In some contexts, the consequent is called the apodosis. [2]

Examples:

is the consequent of this hypothetical proposition.

Here, " is an animal" is the consequent.

"They are alive" is the consequent.

The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent.

"Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple.

See also

Related Research Articles

In propositional logic, affirming the consequent, sometimes called converse error, fallacy of the converse, or confusion of necessity and sufficiency, is a formal fallacy of taking a true conditional statement under certain assumptions, and invalidly inferring its converse, even though that statement may not be true under the same assumptions. This arises when the consequent has other possible antecedents.

Conditional may refer to:

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, equivalence, and negation. Some sources include other connectives, as in the table below.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

In mathematics and logic, a vacuous truth is a conditional or universal statement that is true because the antecedent cannot be satisfied. It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are present in the room. In this case, the statement "all cell phones in the room are turned on" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on and turned off", which would otherwise be incoherent and false.

Deductive reasoning is the mental process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false.

In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication PQ, the converse is QP. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of the original statement.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

<span class="mw-page-title-main">Material conditional</span> Logical connective

The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.

An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis.

The principle of sufficient reason states that everything must have a reason or a cause. The principle was articulated and made prominent by Gottfried Wilhelm Leibniz, with many antecedents, and was further used and developed by Arthur Schopenhauer and Sir William Hamilton, 9th Baronet.

In propositional logic, transposition is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. It is very closely related to the rule of inference modus tollens. It is the rule that

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

<span class="mw-page-title-main">Peirce's law</span> Axiom used in logic and philosophy

In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.

References

  1. Sets, Functions and Logic - An Introduction to Abstract Mathematics, Keith Devlin, Chapman & Hall/CRC Mathematics, 3rd ed., 2004
  2. See Conditional sentence.