Scientific formalism

Last updated

Scientific formalism is a family of approaches to the presentation of science. It is viewed as an important part of the scientific method, especially in the physical sciences.

Contents

Levels of formalism

There are multiple levels of scientific formalism possible. At the lowest level, scientific formalism deals with the symbolic manner in which the information is presented. To achieve formalism in a scientific theory at this level, one starts with a well defined set of axioms, and from this follows a formal system.

However, at a higher level, scientific formalism also involves consideration of the axioms themselves. These can be viewed as questions of ontology. For example, one can, at the lower level of formalism, define a property called 'existence'. However, at the higher level, the question of whether an electron exists in the same sense that a bacterium exists still needs to be resolved.

Some actual formal theories on facts have been proposed. [1]

In modern physics

The scientific climate of the twentieth century revived these questions. From about the time of Isaac Newton to that of James Clerk Maxwell they had been dormant, in the sense that the physical sciences could rely on the status of the real numbers as a description of the continuum, and an agnostic view of atoms and their structure. Quantum mechanics, the dominant physical theory after about 1925, was formulated in a way which raised questions of both types.

In the Newtonian framework there was indeed a degree of comfort in the answers one could give. Consider for example the question of whether the Earth really goes round the Sun. In a frame of reference adapted to calculating the Earth's orbit, this is a mathematical but also tautological statement. Newtonian mechanics can answer the question, whether it is not equally the case that the Sun goes round the Earth, as it indeed appears to Earth-based astronomers. In Newton's theory there is a basic, fixed frame of reference that is inertial. The 'correct answer' is that the point of view of an observer in an inertial frame of reference is privileged: other observers see artifacts of their acceleration relative to an inertial frame (the inertial forces). Before Newton, Galileo would draw the consequences, from the Copernican heliocentric model. He was, however, constrained to call his work (in effect) scientific formalism, under the old 'description' saving the phenomena. To avoid going against authority, the elliptic orbits of the heliocentric model could be labelled as a more convenient device for calculations, rather than an actual description of reality.

In general relativity, Newton's inertial frames are no longer privileged. In quantum mechanics, Paul Dirac argued that physical models were not there to provide semantic constructs allowing us to understand microscopic physics in language comparable to that we use on the familiar scale of everyday objects. His attitude, adopted by many theoretical physicists, is that a good model is judged by our capacity to use it to calculate physical quantities that can be tested experimentally. Dirac's view is close to what Bas van Fraassen calls constructive empiricism. [2]

Duhem

A physicist who took the issues involved seriously was Pierre Duhem, writing at the beginning of the twentieth century. He wrote an extended analysis of the approach he saw as characteristically British, in requiring field theories of theoretical physics to have a mechanical-physical interpretation. That was an accurate characterisation of what Dirac (himself British) would later argue against. The national characteristics specified by Duhem do not need to be taken too seriously, since he also claimed that the use of abstract algebra, namely quaternions, was also characteristically British (as opposed to French or German); as if the use of classical analysis methods alone was important one way or the other.

Duhem also wrote on saving the phenomena. In addition to the Copernican Revolution debate of "saving the phenomena" (Greek: σῴζειν τὰ φαινόμενα, sozein ta phainomena [3] ) [4] [5] versus offering explanations [6] that inspired Duhem was Thomas Aquinas, who wrote, regarding eccentrics and epicycles, that

Reason may be employed in two ways to establish a point: firstly, for the purpose of furnishing sufficient proof of some principle [...]. Reason is employed in another way, not as furnishing a sufficient proof of a principle, but as confirming an already established principle, by showing the congruity of its results, as in astronomy the theory of eccentrics and epicycles is considered as established, because thereby the sensible appearances of the heavenly movements can be explained (possunt salvari apparentia sensibilia); not, however, as if this proof were sufficient, forasmuch as some other theory might explain them. [...] [7]

The idea that a physical interpretation—in common language or classical ideas and physical entities, though of or examined in an ontological or quasi-ontological sense—of a phenomenon in physics is not an ultimate or necessary condition for its understanding or validity, also appears in modern structural realist views on science. [8]

Bellarmine

Robert Bellarmine wrote to heliocentrist Paolo Antonio Foscarini: [9]

Nor is it the same to demonstrate that by assuming the sun to be at the center and the earth in heaven one can save the appearances, and to demonstrate that in truth the sun is at the center and the earth in heaven; for I believe the first demonstration may be available, but I have very great doubts about the second…

Modern physicist Pierre Duhem "suggests that in one respect, at least, Bellarmine had shown himself a better scientist than Galileo by disallowing the possibility of a 'strict proof of the earth's motion,' on the grounds that an astronomical theory merely 'saves the appearances' without necessarily revealing what 'really happens.'" [10]

See also

Notes

  1. "Facts > Some Formal Theories in the Literature (Stanford Encyclopedia of Philosophy)". plato.stanford.edu. Retrieved 19 April 2018.
  2. Monton, Bradley; Mohler, Chad (19 April 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 April 2018 via Stanford Encyclopedia of Philosophy.
  3. An ancient view (attributed to Plato by Simplicius of Cilicia) on hypotheses, theories and phaenomena, on what scientists, or more historically accurately (ancient) astronomers, are for, are supposed to do; see Geminus of Rhodes; James Evans; J.L. Berggren (2006). "10. REALITY AND REPRESENTATIONS IN GREEK ASTRONOMY Hypotheses and Phenomena". Geminos's Introduction to the phenomena: a translation and study of a Hellenistic survey of astronomy. Princeton University Press. pp. 49–51. ISBN   9780691123394. Wherein "The oldest extant text in which the expression "save the phenomena" is only of the first century A.D. namely Plutarch's On the Face in the Orb of the Moon", hence see also (in Greek) Plutarch, De faciae quae in orbe lunae apparet, 923a (or in English) at the Perseus Project
  4. Cf. Duhem, Pierre (1969). To save the phenomena, an essay on the idea of physical theory from Plato to Galileo. Chicago: University of Chicago Press. OCLC   681213472. (excerpt).
  5. Cf. Andreas Osiander's Ad lectorem introduction to Copernicus's De revolutionibus orbium coelestium .
  6. Pierre Duhem thinks "Kepler is, unquestionably, the strongest and most illustrious representative of that tradition," i.e., the tradition of realism, that physical theories offer explanations in addition to just "saving the phenomena."
  7. Summa Theologica , I q. 32 a. 1 ad 2
  8. Ladyman, James (19 April 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 April 2018 via Stanford Encyclopedia of Philosophy.
  9. Bellarmine's 12 April 1615 letter to Galileo, translated in Galilei, Galileo; Maurice A Finocchiaro (2008). The essential Galileo. Indianapolis, Ind.: Hackett Pub. Co. pp. 146–148. Retrieved 2013-10-25.

Related Research Articles

Materialism is a form of philosophical monism which holds that matter is the fundamental substance in nature, and that all things, including mental states and consciousness, are results of material interactions of material things. According to philosophical materialism, mind and consciousness are by-products or epiphenomena of material processes, without which they cannot exist. Materialism directly contrasts with idealism, according to which consciousness is the fundamental substance of nature.

<span class="mw-page-title-main">Willard Van Orman Quine</span> American philosopher and logician (1908–2000)

Willard Van Orman Quine was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century". He served as the Edgar Pierce Chair of Philosophy at Harvard University from 1956 to 1978.

Philosophy of science is a branch of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultimate purpose of science. This discipline overlaps with metaphysics, ontology, and epistemology, for example, when it explores the relationship between science and truth. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of science. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics makes this branch of philosophy broad and unique.

<span class="mw-page-title-main">Reductionism</span> Philosophical view explaining systems in terms of smaller parts

Reductionism is any of several related philosophical ideas regarding the associations between phenomena which can be described in terms of other simpler or more fundamental phenomena. It is also described as an intellectual and philosophical position that interprets a complex system as the sum of its parts.

<span class="mw-page-title-main">Geocentric model</span> Superseded description of the Universe with Earth at the center

In astronomy, the geocentric model is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age.

<span class="mw-page-title-main">Deferent and epicycle</span> Planetary motions in archaic models of the Solar System

In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics.

A scientific theory is an explanation of an aspect of the natural world and universe that can be repeatedly tested and corroborated in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, some theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.

In philosophy of science and in epistemology, instrumentalism is a methodological view that ideas are useful instruments, and that the worth of an idea is based on how effective it is in explaining and predicting natural phenomena. According to instrumentalists, a successful scientific theory reveals nothing known either true or false about nature's unobservable objects, properties or processes. Scientific theory is merely a tool whereby humans predict observations in a particular domain of nature by formulating laws, which state or summarize regularities, while theories themselves do not reveal supposedly hidden aspects of nature that somehow explain these laws. Instrumentalism is a perspective originally introduced by Pierre Duhem in 1906.

<span class="mw-page-title-main">Pierre Duhem</span> French physicist (1861–1916)

Pierre Maurice Marie Duhem was a French theoretical physicist who worked on thermodynamics, hydrodynamics, and the theory of elasticity. Duhem was also a historian of science, noted for his work on the European Middle Ages, which is regarded as having created the field of the history of medieval science. As a philosopher of science, he is remembered principally for his views on the indeterminacy of experimental criteria.

<i>De revolutionibus orbium coelestium</i> 1543 book by Copernicus describing his heliocentric theory of the universe

De revolutionibus orbium coelestium is the seminal work on the heliocentric theory of the astronomer Nicolaus Copernicus (1473–1543) of the Polish Renaissance. The book, first printed in 1543 in Nuremberg, Holy Roman Empire, offered an alternative model of the universe to Ptolemy's geocentric system, which had been widely accepted since ancient times.

The deductive-nomological model of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure, one where truth of its premises entails truth of its conclusion, hinged on accurate prediction or postdiction of the phenomenon to be explained.

In optics, the corpuscular theory of light states that light is made up of small discrete particles called "corpuscles" which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period.

<span class="mw-page-title-main">Duhem–Quine thesis</span>

In philosophy of science, the Duhem–Quine thesis, also called the Duhem–Quine problem, posits that it is impossible to experimentally test a scientific hypothesis in isolation, because an empirical test of the hypothesis requires one or more background assumptions : the thesis says that unambiguous scientific falsifications are impossible. It is named after French theoretical physicist Pierre Duhem and American logician Willard Van Orman Quine, who wrote about similar concepts.

<span class="mw-page-title-main">Galileo affair</span> 17th century conflict between Galileo Galilei and the Roman Catholic Church

The Galileo affair began around 1610 and culminated with the trial and condemnation of Galileo Galilei by the Roman Catholic Inquisition in 1633. Galileo was prosecuted for his support of heliocentrism, the astronomical model in which the Earth and planets revolve around the Sun at the centre of the universe.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Hypothesis</span> Proposed explanation for an observation, phenomenon, or scientific problem

A hypothesis is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought.

Philosophy of motion is a branch of philosophy concerned with exploring questions on the existence and nature of motion. The central questions of this study concern the epistemology and ontology of motion, whether motion exists as we perceive it, what is it, and, if it exists, how does it occur. The philosophy of motion is important in the study of theories of change in natural systems and is closely connected to studies of space and time in philosophy.

Jacques du Chevreul was a French mathematician, astronomer, and philosopher.