Explanatory power

Last updated

Explanatory power is the ability of a hypothesis or theory to explain the subject matter effectively to which it pertains. Its opposite is explanatory impotence.

Contents

In the past, various criteria or measures for explanatory power have been proposed. In particular, one hypothesis, theory, or explanation can be said to have more explanatory power than another about the same subject matter[ citation needed ]

Recently, David Deutsch proposed that theorists should seek explanations that are hard to vary. A theory or explanation is hard to vary if all details play a functional role, i.e., cannot be varied or removed without changing the predictions of the theory. Easy to vary (i.e., bad) explanations, in contrast, can be varied to be reconciled with new observations because they are barely connected to the details of the phenomenon of question.

Examples

Deutsch takes examples from Greek mythology. He describes how very specific, and even somewhat falsifiable theories were provided to explain how the god Demeter's sadness caused the seasons. Alternatively, Deutsch points out, one could have just as easily explained the seasons as resulting from the god's happiness, which would make it a poor explanation because it is so easy to arbitrarily change details. [1] Without Deutsch's criterion, the 'Greek gods explanation' could have just kept adding justifications. The same criterion, of being "hard to vary", may be what makes the modern explanation for the seasons a good one. None of the details about the Earth rotating around the Sun at a certain angle in a certain orbit can be easily modified without changing the theory's coherence. [1] [2]

Relation to other criteria

The philosopher Karl Popper acknowledged it is logically possible to avoid falsification of a hypothesis by changing details to avoid any criticism, adopting the term an immunizing stratagem from Hans Albert. [3] Popper argued that scientific hypotheses should be subjected to methodological testing to select for the strongest hypothesis. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Falsifiability</span> Property of a statement that can be logically contradicted

Falsifiability is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl Popper in his book The Logic of Scientific Discovery (1934). A theory or hypothesis is falsifiable if it can be logically contradicted by an empirical test.

<span class="mw-page-title-main">Karl Popper</span> Austrian–British philosopher of science (1902–1994)

Sir Karl Raimund Popper was an Austrian–British philosopher, academic and social commentator. One of the 20th century's most influential philosophers of science, Popper is known for his rejection of the classical inductivist views on the scientific method in favour of empirical falsification. According to Popper, a theory in the empirical sciences can never be proven, but it can be falsified, meaning that it can be scrutinised with decisive experiments. Popper was opposed to the classical justificationist account of knowledge, which he replaced with critical rationalism, namely "the first non-justificational philosophy of criticism in the history of philosophy".

<span class="mw-page-title-main">Scientific method</span> Interplay between observation, experiment and theory in science

The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; the testability of hypotheses, experimental and the measurement-based statistical testing of deductions drawn from the hypotheses; and refinement of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.

A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.

In philosophy, Occam's razor is the problem-solving principle that recommends searching for explanations constructed with the smallest possible set of elements. It is also known as the principle of parsimony or the law of parsimony. Attributed to William of Ockham, a 14th-century English philosopher and theologian, it is frequently cited as Entia non sunt multiplicanda praeter necessitatem, which translates as "Entities must not be multiplied beyond necessity", although Occam never used these exact words. Popularly, the principle is sometimes inaccurately paraphrased as "The simplest explanation is usually the best one."

<span class="mw-page-title-main">Problem of induction</span> Question of whether inductive reasoning leads to definitive knowledge

First formulated by David Hume, the problem of induction questions our reasons for believing that the future will resemble the past, or more broadly it questions predictions about unobserved things based on previous observations. This inference from the observed to the unobserved is known as "inductive inferences". Hume, while acknowledging that everyone does and must make such inferences, argued that there is no non-circular way to justify them, thereby undermining one of the Enlightenment pillars of rationality.

A scientific theory is an explanation of an aspect of the natural world and universe that can be repeatedly tested and corroborated in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, some theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.

Scientific evidence is evidence that serves to either support or counter a scientific theory or hypothesis, although scientists also use evidence in other ways, such as when applying theories to practical problems. Such evidence is expected to be empirical evidence and interpretable in accordance with the scientific method. Standards for scientific evidence vary according to the field of inquiry, but the strength of scientific evidence is generally based on the results of statistical analysis and the strength of scientific controls.

Critical rationalism is an epistemological philosophy advanced by Karl Popper on the basis that, if a statement cannot be logically deduced, it might nevertheless be possible to logically falsify it. Following Hume, Popper rejected any inductive logic that is ampliative, i.e., any logic that can provide more knowledge than deductive logic. This led Popper to his falsifiability criterion.

In philosophy of science and epistemology, the demarcation problem is the question of how to distinguish between science and non-science. It also examines the boundaries between science, pseudoscience and other products of human activity, like art and literature and beliefs. The debate continues after more than two millennia of dialogue among philosophers of science and scientists in various fields. The debate has consequences for what can be termed "scientific" in topics such as education and public policy.

Testability is a primary aspect of science and the scientific method. There are two components to testability:

  1. Falsifiability or defeasibility, which means that counterexamples to the hypothesis are logically possible.
  2. The practical feasibility of observing a reproducible series of such counterexamples if they do exist.

Verificationism, also known as the verification principle or the verifiability criterion of meaning, is the philosophical doctrine which asserts that a statement is meaningful only if it is either empirically verifiable or a truth of logic.

Models of scientific inquiry have two functions: first, to provide a descriptive account of how scientific inquiry is carried out in practice, and second, to provide an explanatory account of why scientific inquiry succeeds as well as it appears to do in arriving at genuine knowledge. The philosopher Wesley C. Salmon described scientific inquiry:

The search for scientific knowledge ends far back into antiquity. At some point in the past, at least by the time of Aristotle, philosophers recognized that a fundamental distinction should be drawn between two kinds of scientific knowledge—roughly, knowledge that and knowledge why. It is one thing to know that each planet periodically reverses the direction of its motion with respect to the background of fixed stars; it is quite a different matter to know why. Knowledge of the former type is descriptive; knowledge of the latter type is explanatory. It is explanatory knowledge that provides scientific understanding of the world.

Inductivism is the traditional and still commonplace philosophy of scientific method to develop scientific theories. Inductivism aims to neutrally observe a domain, infer laws from examined cases—hence, inductive reasoning—and thus objectively discover the sole naturally true theory of the observed.

Conventionalism is the philosophical attitude that fundamental principles of a certain kind are grounded on agreements in society, rather than on external reality. Unspoken rules play a key role in the philosophy's structure. Although this attitude is commonly held with respect to the rules of grammar, its application to the propositions of ethics, law, science, biology, mathematics, and logic is more controversial.

<i>The Poverty of Historicism</i> 1944 book by Karl Popper

The Poverty of Historicism is a 1944 book by the philosopher Karl Popper, in which the author argues that the idea of historicism is dangerous and bankrupt.

<span class="mw-page-title-main">Hypothesis</span> Proposed explanation for an observation, phenomenon, or scientific problem

A hypothesis is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought.

In philosophy, a razor is a principle or rule of thumb that allows one to eliminate unlikely explanations for a phenomenon, or avoid unnecessary actions.

<i>The Beginning of Infinity</i> 2011 Book by David Deutsch

The Beginning of Infinity: Explanations that Transform the World is a popular science book by the physicist David Deutsch first published in 2011.

Bold hypothesis or bold conjecture is a concept in the philosophy of science of Karl Popper, first explained in his debut The Logic of Scientific Discovery (1935) and subsequently elaborated in writings such as Conjectures and Refutations: The Growth of Scientific Knowledge (1963). The concept is nowadays widely used in the philosophy of science and in the philosophy of knowledge. It is also used in the social and behavioural sciences.

References

  1. 1 2 David Deutsch, "A new way of explaining explanation"
  2. David Deutsch (2011), The Beginning Of Infinity", ch1, The Reach of Explanations
  3. Ray S. Percival (2012), The Myth of the Closed Mind: Explaining why and how People are Rational, p.206, Chicago.
  4. Karl R. Popper (1934), The Logic of Scientific Discovery, p.20, Routledge Classics (ed. 2004)