Philosophy of chemistry

Last updated

The philosophy of chemistry considers the methodology and underlying assumptions of the science of chemistry. It is explored by philosophers, chemists, and philosopher-chemist teams. For much of its history, philosophy of science has been dominated by the philosophy of physics, but the philosophical questions that arise from chemistry have received increasing attention since the latter part of the 20th century. [1] [2]

Contents

Foundations of chemistry

Major philosophical questions arise as soon as one attempts to define chemistry and what it studies. Atoms and molecules are often assumed to be the fundamental units of chemical theory, [3] but traditional descriptions of molecular structure and chemical bonding fail to account for the properties of many substances, including metals and metal complexes [4] and aromaticity. [5]

Additionally, chemists frequently use non-existent chemical entities like resonance structures [4] [5] to explain the structure and reactions of different substances; these explanatory tools use the language and graphical representations of molecules to describe the behavior of chemicals and chemical reactions that in reality do not behave as straightforward molecules.[ citation needed ]

Some chemists and philosophers of chemistry prefer to think of substances, rather than microstructures, as the fundamental units of study in chemistry. There is not always a one-to-one correspondence between the two methods of classifying substances. [3] For example, many rocks exist as mineral complexes composed of multiple ions that do not occur in fixed proportions or spatial relationships to one another. [4]

A related philosophical problem is whether chemistry is the study of substances or reactions. [3] Atoms, even in a solid, are in perpetual motion and under the right conditions many chemicals react spontaneously to form new products. A variety of environmental variables contribute to a substance's properties, including temperature and pressure, proximity to other molecules and the presence of a magnetic field. [3] [4] [5] As Schummer puts it, "Substance philosophers define a chemical reaction by the change of certain substances, whereas process philosophers define a substance by its characteristic chemical reactions." [3]

Philosophers of chemistry discuss issues of symmetry and chirality in nature. Organic (i.e., carbon-based) molecules are those most often chiral. Amino acids, nucleic acids and sugars, all of which are found exclusively as a single enantiomer in organisms, are the basic chemical units of life. Chemists, biochemists, and biologists alike debate the origins of this homochirality. Philosophers debate facts regarding the origin of this phenomenon, namely whether it emerged contingently, amid a lifeless racemic environment or if other processes were at play. Some speculate that answers can only be found in comparison to extraterrestrial life, if it is ever found. Other philosophers question whether there exists a bias toward assumptions of nature as symmetrical, thereby causing resistance to any evidence to the contrary.[ citation needed ]

One of the most topical issues is determining to what extent physics, specifically, quantum mechanics, explains chemical phenomena. Can chemistry, in fact, be reduced to physics as has been assumed by many, or are there inexplicable gaps? Some authors, for example, Roald Hoffmann, [6] have recently suggested that a number of difficulties exist in the reductionist program with concepts like aromaticity, pH, reactivity, nucleophilicity, for example.

Philosophers of chemistry

Friedrich Wilhelm Joseph Schelling was among the first philosophers to use the term "philosophy of chemistry". [7]

Several philosophers and scientists have focused on the philosophy of chemistry in recent years, notably, the Dutch philosopher Jaap van Brakel, who wrote The Philosophy of Chemistry in 2000, and the Maltese-born philosopher-chemist Eric Scerri, founder and editor of the journal Foundations of Chemistry. Scerri is also the author of "Normative and Descriptive Philosophy of Science and the Role of Chemistry," published in Philosophy of Chemistry in 2004, among other articles, many of which are collected in Collected Papers on the Philosophy of Chemistry. Scerri is especially interested in the philosophical foundations of the periodic table, and how physics and chemistry intersect in relation to it, which he contends is not merely a matter for science, but for philosophy. [8]

Although in other fields of science students of the method are generally not practitioners in the field, in chemistry (particularly in synthetic organic chemistry) intellectual method and philosophical foundations are often explored by investigators with active research programmes. Elias James Corey developed the concept of "retrosynthesis" published a seminal work "The logic of chemical synthesis" which deconstructs these thought processes and speculates on computer-assisted synthesis. Other chemists such as K. C. Nicolaou (co-author of Classics in Total Synthesis) have followed in his lead.

See also

Related Research Articles

<span class="mw-page-title-main">Hermann Kolbe</span> German chemist (1818–1884)

Adolph Wilhelm Hermann Kolbe was a German chemist and academic, and a major contributor to the birth of modern organic chemistry. He was a professor at Marburg and Leipzig. Kolbe was the first to apply the term synthesis in a chemical context, and contributed to the philosophical demise of vitalism through synthesis of the organic substance acetic acid from carbon disulfide, and also contributed to the development of structural theory. This was done via modifications to the idea of "radicals" and accurate prediction of the existence of secondary and tertiary alcohols, and to the emerging array of organic reactions through his Kolbe electrolysis of carboxylate salts, the Kolbe-Schmitt reaction in the preparation of aspirin and the Kolbe nitrile synthesis. After studies with Wöhler and Bunsen, Kolbe was involved with the early internationalization of chemistry through work in London. He was elected to the Royal Swedish Academy of Sciences, and won the Royal Society of London's Davy Medal in the year of his death. Despite these accomplishments and his training important members of the next generation of chemists, Kolbe is best remembered for editing the Journal für Praktische Chemie for more than a decade, in which his vituperative essays on Kekulé's structure of benzene, van't Hoff's theory on the origin of chirality and Baeyer's reforms of nomenclature were personally critical and linguistically violent. Kolbe died of a heart attack in Leipzig at age 66, six years after the death of his wife, Charlotte.

<span class="mw-page-title-main">History of atomic theory</span>

Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries. Initially, it referred to a hypothetical concept of there being some fundamental particle of matter, too small to be seen by the naked eye, that could not be divided. Then the definition was refined to being the basic particles of the chemical elements, when chemists observed that elements seemed to combine with each other in ratios of small whole numbers. Then physicists discovered that these particles had an internal structure of their own and therefore perhaps did not deserve to be called "atoms", but renaming atoms would have been impractical by that point.

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

The following outline acts as an overview of and topical guide to chemistry:

In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.

In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula CH3. In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many organic compounds. It is a very stable group in most molecules. While the methyl group is usually part of a larger molecule, bonded to the rest of the molecule by a single covalent bond, it can be found on its own in any of three forms: methanide anion, methylium cation or methyl radical. The anion has eight valence electrons, the radical seven and the cation six. All three forms are highly reactive and rarely observed.

<span class="mw-page-title-main">Physical chemistry</span> Physics applied to chemical systems

Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together is called the "physical sciences".

<span class="mw-page-title-main">Conservation of mass</span> Scientific law that a closed systems mass remains constant

In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter the mass of the system must remain constant over time.

<span class="mw-page-title-main">Robert Burns Woodward</span> American chemist (1917–1979)

Robert Burns Woodward was an American organic chemist. He is considered by many to be the preeminent synthetic organic chemist of the twentieth century, having made many key contributions to the subject, especially in the synthesis of complex natural products and the determination of their molecular structure. He worked closely with Roald Hoffmann on theoretical studies of chemical reactions. He was awarded the Nobel Prize in Chemistry in 1965.

<span class="mw-page-title-main">History of the periodic table</span> Development of the table of chemical elements

The periodic table is an arrangement of the chemical elements, structured by their atomic number, electron configuration and recurring chemical properties. In the basic form, elements are presented in order of increasing atomic number, in the reading sequence. Then, rows and columns are created by starting new rows and inserting blank cells, so that rows (periods) and columns (groups) show elements with recurring properties. For example, all elements in group (column) 18 are noble gases that are largely—though not completely—unreactive.

<span class="mw-page-title-main">History of chemistry</span>

The history of chemistry represents a time span from ancient history to the present. By 1000 BC, civilizations used technologies that would eventually form the basis of the various branches of chemistry. Examples include the discovery of fire, extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze.

Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the general subject of organic synthesis, there are many different types of synthetic routes that can be completed including total synthesis, stereoselective synthesis, automated synthesis, and many more. Additionally, in understanding organic synthesis it is necessary to be familiar with the methodology, techniques, and applications of the subject.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

Mathematical chemistry is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. Mathematical chemistry has also sometimes been called computer chemistry, but should not be confused with computational chemistry.

<span class="mw-page-title-main">Timeline of chemistry</span>

This timeline of chemistry lists important works, discoveries, ideas, inventions, and experiments that significantly changed humanity's understanding of the modern science known as chemistry, defined as the scientific study of the composition of matter and of its interactions.

<span class="mw-page-title-main">Chemical substance</span> Form of matter

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

<span class="mw-page-title-main">Eric Scerri</span> American philosopher

Eric R. Scerri is a chemist, writer and philosopher of science of Maltese origin. He is a lecturer at the University of California, Los Angeles; and the founder and editor-in-chief of Foundations of Chemistry, an international peer reviewed journal covering the history and philosophy of chemistry, and chemical education.

Nalini Bhushan is an American philosopher and the Andrew W. Mellon Professor in the Humanities at Smith College. Her work is on the philosophy of chemistry and Indian philosophy, among other subjects.

References

  1. Weisberg, M. (2001). Why not a philosophy of chemistry? American Scientist. Retrieved April 10, 2009.
  2. Scerri, E.R., & McIntyre, L. (1997). The case for the philosophy of chemistry. Synthese, 111: 213–232. Retrieved April 10, 2009 from http://philsci-archive.pitt.edu/archive/00000254/
  3. 1 2 3 4 5 Schummer, Joachim. (2006). Philosophy of science. In Encyclopedia of philosophy, second edition. New York, NY: Macmillan.
  4. 1 2 3 4 Ebbing, D., & Gammon, S. (2005). General chemistry. Boston, MA: Houghton Mifflin.
  5. 1 2 3 Pavia, D., Lampman, G., & Kriz, G. (2004). Organic chemistry, volume 1. Mason, OH: Cengage Learning.
  6. The Same and Not the Same (Columbia, 1995, pp. 19-20)
  7. Friedrich Wilhelm Joseph Schelling, Ideen zu einer Philosophie der Natur als Einleitung in das Studium dieser Wissenschaft (1797): Second Book, ch. 7: "Philosophie der Chemie überhaupt".
  8. Scerri, Eric R. (2008). Collected Papers on Philosophy of Chemistry. London: Imperial College Press. ISBN   978-1-84816-137-5.

Further reading

Review articles

Journals

Books