Semisynthesis

Last updated

Semisynthesis, or partial chemical synthesis, is a type of chemical synthesis that uses chemical compounds isolated from natural sources (such as microbial cell cultures or plant material) as the starting materials to produce novel compounds with distinct chemical and medicinal properties. The novel compounds generally have a high molecular weight or a complex molecular structure, more so than those produced by total synthesis from simple starting materials. Semisynthesis is a means of preparing many medicines more cheaply than by total synthesis since fewer chemical steps are necessary.

Contents

Overview

Semisynthesis of paclitaxel. Installation of the necessary side chain and acetyl group of paclitaxel by a short series of steps, starting from isolated 10-deacetylbaccatine III. Semisynthese taxol.svg
Semisynthesis of paclitaxel . Installation of the necessary side chain and acetyl group of paclitaxel by a short series of steps, starting from isolated 10-deacetylbaccatine III.
An undesirable lactone ring in artemisinin is replaced by an acetal by reduction with potassium borohydride, followed by methoxylation. ArtemetherSynthesis.png
An undesirable lactone ring in artemisinin is replaced by an acetal by reduction with potassium borohydride, followed by methoxylation.

Drugs derived from natural sources are usually produced by isolation from the natural source or, as described here, by semisynthesis from such an isolated agent. From the viewpoint of chemical synthesis, living organisms are remarkable chemical factories that can easily produce structurally-complex chemical compounds by biosynthesis. In contrast, engineered chemical synthesis is necessarily simpler, with a lower chemical diversity in each reaction, than the incredibly-diverse biosynthesis pathways that are crucial to life.

As a result, certain functional groups are much easier to prepare by engineered synthesis than others, such as acetylation, in which certain biosynthetic pathways can generate groups and structures with minimal economic input that would be prohibitive via total synthesis.

Plants, animals, fungi, and bacteria are all used as sources for those tricky precursor molecules, including the use of bioreactors at the meeting point between engineered and biological chemical synthesis.

Semisynthesis, when it is used in drug discovery, aims to retain the sought-after medicinal activity while other molecule characteristics are altered, such as those that affect its adverse events or its oral bioavailability in a few chemical steps. In that regard, semisynthesis stands in contrast with the approach of total synthesis, whose aim is to arrive at a target molecule from low-molecular-weight, inexpensive starting materials, often petrochemicals or minerals. [3] While there is no hard-and-fast division between total synthesis and semisynthesis, which rather differ in the degree of engineered synthesis that is used, many commodity precursor molecules with complex or fragile functional groups are much cheaper in practice to extract from an organism than to prepare from simple precursors only. Hence, methods of semisynthesis are applied when a needed precursor molecule is too structurally complex, too costly, or too difficult to produce by total synthesis.

Examples of practical application of the use of semisynthesis include in the groundbreaking historic case of the isolation of the antibiotic chlortetracycline and the semisyntheses of the further novel antibiotics tetracycline, doxycycline, and tigecycline. [4] [5]

Further examples of semisynthesis include the early commercial production of the anti-cancer agent paclitaxel from 10-deacetylbaccatin isolated from the needles of Taxus baccata (European yew), [1] the preparation of LSD from ergotamine isolated from fungal cultures of ergot,[ citation needed ] and the semisynthesis of the antimalarial drug artemether from naturally-occurring artemisinin. [2] [ non-primary source needed ][ non-primary source needed ] As the field of synthetic chemistry advances, certain transformations become cheaper or easier, and the economics of a semisynthetic route may become less favorable. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

Synthesis or synthesize may refer to:

<span class="mw-page-title-main">Oxytetracycline</span> Antibiotic

Oxytetracycline is a broad-spectrum tetracycline antibiotic, the second of the group to be discovered.

Total synthesis is the complete chemical synthesis of a complex molecule, often a natural product, from simple, commercially-available precursors. It usually refers to a process not involving the aid of biological processes, which distinguishes it from semisynthesis. Syntheses may sometimes conclude at a precursor with further known synthetic pathways to a target molecule, in which case it is known as a formal synthesis. Total synthesis target molecules can be natural products, medicinally-important active ingredients, known intermediates, or molecules of theoretical interest. Total synthesis targets can also be organometallic or inorganic, though these are rarely encountered. Total synthesis projects often require a wide diversity of reactions and reagents, and subsequently requires broad chemical knowledge and training to be successful.

<span class="mw-page-title-main">Bacitracin</span> Polypeptide antibiotic

Bacitracin is a polypeptide antibiotic. It is a mixture of related cyclic peptides produced by Bacillus licheniformis bacteria, that was first isolated from the variety "Tracy I" in 1945. These peptides disrupt gram-positive bacteria by interfering with cell wall and peptidoglycan synthesis.

<span class="mw-page-title-main">Medicinal chemistry</span> Scientific branch of chemistry

Medicinal or pharmaceutical chemistry is a scientific discipline at the intersection of chemistry and pharmacy involved with designing and developing pharmaceutical drugs. Medicinal chemistry involves the identification, synthesis and development of new chemical entities suitable for therapeutic use. It also includes the study of existing drugs, their biological properties, and their quantitative structure-activity relationships (QSAR).

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Natural product</span> Chemical compound or substance produced by a living organism, found in nature

A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.

<span class="mw-page-title-main">Fine chemical</span> Pure chemical substances produced by and for the chemical industry

In chemistry, fine chemicals are complex, single, pure chemical substances, produced in limited quantities in multipurpose plants by multistep batch chemical or biotechnological processes. They are described by exacting specifications, used for further processing within the chemical industry and sold for more than $10/kg. The class of fine chemicals is subdivided either on the basis of the added value, or the type of business transaction, namely standard or exclusive products.

<span class="mw-page-title-main">Paclitaxel total synthesis</span>

Paclitaxel total synthesis in organic chemistry is a major ongoing research effort in the total synthesis of paclitaxel (Taxol). This diterpenoid is an important drug in the treatment of cancer but, also expensive because the compound is harvested from a scarce resource, namely the Pacific yew. Not only is the synthetic reproduction of the compound itself of great commercial and scientific importance, but it also opens the way to paclitaxel derivatives not found in nature but with greater potential.

<span class="mw-page-title-main">Tetracycline antibiotics</span> Type of broad-spectrum antibiotic

Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide. While all tetracyclines have a common structure, they differ from each other by the presence of chloro, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.

<span class="mw-page-title-main">Platensimycin</span> Chemical compound

Platensimycin, a metabolite of Streptomyces platensis, is an antibiotic, which act by blocking enzymes.

<span class="mw-page-title-main">Chemical substance</span> Matter of constant chemical composition and properties

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

<span class="mw-page-title-main">Dynemicin A</span> Anti-cancer drug

Dynemicin A is an anti-cancer enediyne drug. It displays properties which illustrate promise for cancer treatments, but still requires further research.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Mark L. Nelson is an American chemist specializing in the field of antibiotics and tetracyclines. His synthesis techniques have resulted in over 40 patents and he conceived and synthesized with Mohamed Ismail along with Laura Honeyman, the tetracycline antibiotic Omadacycline (Nuzyra), the first of the Aminomethylcycline subclass of tetracyclines to reach medical use. Nuzyra is useful against resistant bacteria and used for severe cases of skin infections, ABSSSIs, Community Acquired Pneumonia (CABP) and nontuberculosis mycobacteria. Nuzyra also has demonstrated activity against Anthrax, and was purchased by the US government under a BARDA contract for Project Bio-shield to treat anthrax exposure, and is now in the Strategic National Stockpile in the US in case of a bioterrorism attack. Nuzyra was also approved for use against the Plague, caused by Yersinia pestis infections.

<span class="mw-page-title-main">Rubellin B</span> Chemical compound

Rubellin B is a phytotoxic chemical responsible for the Ramularia leaf spot disease due to its ability to create reactive radical superoxides. The drug has not been involved in many clinical studies, but has been found to prevent tau aggregation pointing to its potential in the treatment of Alzheimer's disease.

References

  1. 1 2 Goodman, Jordan; Walsh, Vivien (5 March 2001). The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug. Cambridge University Press. pp. 100f. ISBN   978-0-521-56123-5.
  2. 1 2 Boehm M, Fuenfschilling PC, Krieger M, Kuesters E, Struber, F (2007). "An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part I". Org. Process Res. Dev. 11 (3): 336–340. doi:10.1021/op0602425.
  3. 1 2 "Welcome to Chemistry World". Chemistry World.
  4. Nelson ML, Levy SB (2011). "The History of the Tetracyclines". Annals of the New York Academy of Sciences. 1241 (December): 17–32. Bibcode:2011NYASA1241...17N. doi:10.1111/j.1749-6632.2011.06354.x. PMID   22191524. S2CID   34647314.
  5. Liu F, Myers, AG (2016). "Development of a Platform for the Discovery and Practical Synthesis of New Tetracycline Antibiotics" (PDF). Current Opinion in Chemical Biology. 32: 48–57. doi: 10.1016/j.cbpa.2016.03.011 . PMID   27043373.