Chemical synthesis

Last updated

Chemical synthesis (chemical combination) is the artificial execution of chemical reactions to obtain one or several products. [1] This occurs by physical and chemical manipulations usually involving one or more reactions. In modern laboratory uses, the process is reproducible and reliable.

Contents

A chemical synthesis involves one or more compounds (known as reagents or reactants) that will experience a transformation under certain conditions. Various reaction types can be applied to formulate a desired product. This requires mixing the compounds in a reaction vessel, such as a chemical reactor or a simple round-bottom flask. Many reactions require some form of processing ("work-up") or purification procedure to isolate the final product. [1]

The amount produced by chemical synthesis is known as the reaction yield . Typically, yields are expressed as a mass in grams (in a laboratory setting) or as a percentage of the total theoretical quantity that could be produced based on the limiting reagent. A side reaction is an unwanted chemical reaction that can reduce the desired yield. The word synthesis was used first in a chemical context by the chemist Hermann Kolbe. [2]

Strategies

Many strategies exist in chemical synthesis that are more complicated than simply converting a reactant A to a reaction product B directly. For multistep synthesis, a chemical compound is synthesized by a series of individual chemical reactions, each with its own work-up. [3] For example, a laboratory synthesis of paracetamol can consist of three sequential parts. For cascade reactions, multiple chemical transformations occur within a single reactant, for multi-component reactions as many as 11 different reactants form a single reaction product and for a "telescopic synthesis" one reactant experiences multiple transformations without isolation of intermediates.

Organic synthesis

Organic synthesis is a special type of chemical synthesis dealing with the synthesis of organic compounds. For the total synthesis of a complex product, multiple procedures in sequence may be required to synthesize the product of interest, needing a lot of time. A purely synthetic chemical synthesis begins with basic lab compounds. A semisynthetic process starts with natural products from plants or animals and then modifies them into new compounds.

Inorganic synthesis

Inorganic synthesis and organometallic synthesis are used to prepare compounds with significant non-organic content. An illustrative example is the preparation of the anti-cancer drug cisplatin from potassium tetrachloroplatinate. [4]

Cisplatin synthesis.svg

Inorganic Steps

Inorganic synthesis can be incredibly complex, and involve several intermediates and elementary steps. The steps outlined below are a few of the types of steps that can occur during an inorganic synthesis.

Oxidative Additiion

Oxidative Addition involves a metal center and a molecule with at least two atoms; the atoms can be of the same species, but do not necessarily have to be. The bond between the two atoms will break, and 2 new bonds will form between those atoms and the metal center. [5]

The general reaction cheme for oxidative addition and reductive elimination Oxidative addition-Reductive elimination.png
The general reaction cheme for oxidative addition and reductive elimination

This is referred to as "oxidative" because atoms A and B oxidize the metal; that is, the oxidation state of the metal is +2 relative to the oxidation state of the metal before the oxidative addition took place. [5]

Reductive Elimination

Reductive Elimination is the reverse reaction of Oxidative Addition. It invovles two atoms, A and B, bonded to a metal center. Reductive elimination will see atoms A and B form a bond with each other while both losing their bonds with the metal center. [6]

This is referred to as "Reductive" because this reaction reduces the metla center; that is, the metal center's oxidation state will be 2 lower than it was before the reaction took place. [7]

Ligand Substitution

Ligand Substitution occurs when a chemical species attached the a metal center is replaced with a different one.

Associative Substitution
The steps of associative substitution AssveRxn.png
The steps of associative substitution

Associative Substitution sees an incoming ligand Y coordinate to the metal center as the first step. Only after the association is complete, will the leaving ligand X leave the metal center, completing the substution process. [8]

This mechanism tends to occur with complexes that are unsaturated in both ligands and electrons; that is, ligands with <6 ligands and <18 valence electrons. [9]

The first step is generally rate determining, meaning that the reaction rate is second order; the reaction speed dependsd on both the concentration of the metal center and the concentration of the [Y] species. [10]

Dissociative Substitution

Dissociative substution sees the outgoing ligand X leave the metal center before the incoming lingad Y coordinates with the metal center. Only after X completely leaves does the new ligand Y coordinate to the metal center.

This mechanism tends to occur with ligands that are fully staurated; that is, complexes with 6 ligands and 18 valence electrons.

The rate determing step tends to be the dissociation step. Thus, the rate tends to be first order; the reaction rate depends on the concentration of the metal center, and is independant of both the concentration and identity of ligand Y.

See also

Related Research Articles

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Metallocene</span> Type of compound having a metal center

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Organic reaction</span> Chemical reactions involving organic compounds

Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemical reactions and redox reactions. In organic synthesis, organic reactions are used in the construction of new organic molecules. The production of many man-made chemicals such as drugs, plastics, food additives, fabrics depend on organic reactions.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

In chemistry, a nucleophilic substitution (SN) is a class of chemical reactions in which an electron-rich chemical species replaces a functional group within another electron-deficient molecule. The molecule that contains the electrophile and the leaving functional group is called the substrate.

A substitution reaction is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to predict the product outcome in a reaction. It also is helpful for optimizing a reaction with regard to variables such as temperature and choice of solvent.

The Stille reaction is a chemical reaction widely used in organic synthesis. The reaction involves the coupling of two organic groups, one of which is carried as an organotin compound (also known as organostannanes). A variety of organic electrophiles provide the other coupling partner. The Stille reaction is one of many palladium-catalyzed coupling reactions.

Oxidative addition and reductive elimination are two important and related classes of reactions in organometallic chemistry. Oxidative addition is a process that increases both the oxidation state and coordination number of a metal centre. Oxidative addition is often a step in catalytic cycles, in conjunction with its reverse reaction, reductive elimination.

<span class="mw-page-title-main">Wilkinson's catalyst</span> Chemical compound

Wilkinson's catalyst (chlorido­tris(triphenylphosphine)­rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh3)], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

<span class="mw-page-title-main">Electron transfer</span> Relocation of an electron from an atom or molecule to another

Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Chemical substance</span> Form of matter

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

In chemistry, a Zintl phase is a product of a reaction between a group 1 or group 2 and main group metal or metalloid. It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

Associative substitution describes a pathway by which compounds interchange ligands. The terminology is typically applied to organometallic and coordination complexes, but resembles the Sn2 mechanism in organic chemistry. The opposite pathway is dissociative substitution, being analogous to the Sn1 pathway. Intermediate pathways exist between the pure associative and pure dissociative pathways, these are called interchange mechanisms.

In chemistry, metal vapor synthesis (MVS) is a method for preparing metal complexes by combining freshly produced metal atoms or small particles with ligands. In contrast to the high reactivity of such freshly produced metal atoms, bulk metals typically are unreactive toward neutral ligands. The method has been used to prepare compounds that cannot be prepared by traditional synthetic methods, e.g. Ti(η6-toluene)2. The technique relies on a reactor that evaporates the metal, allowing the vapor to impinge on a cold reactor wall that is coated with the organic ligand. The metal evaporates upon being heated resistively or irradiated with an electron beam. The apparatus operates under high vacuum. In a common implementation, the metal vapor and the organic ligand are co-condensed at liquid nitrogen temperatures.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

References

  1. 1 2 Vogel, A.I.; Tatchell, A.R.; Furnis, B.S.; Hannaford, A.J.; Smith, P.W.G. (1996). Vogel's Textbook of Practical Organic Chemistry (5th ed.). Prentice Hall. ISBN   0-582-46236-3.
  2. Kolbe, H. (1845). "Beiträge zur Kenntniss der gepaarten Verbindungen". Annalen der Chemie und Pharmacie. 54 (2): 145–188. doi:10.1002/jlac.18450540202. ISSN   0075-4617. Archived from the original on Jun 30, 2023 via Zenodo.
  3. Carey, Francis A.; Sundberg, Richard J. (2013). Advanced Organic Chemistry Part B: Reactions and Synthesis. Springer.
  4. Alderden, Rebecca A.; Hall, Matthew D.; Hambley, Trevor W. (1 May 2006). "The Discovery and Development of Cisplatin". J. Chem. Educ. 83 (5): 728. Bibcode:2006JChEd..83..728A. doi:10.1021/ed083p728.
  5. 1 2 Housecroft, Catherine E.; Sharpe, Alan G. (2018). Inorganic chemistry (Fifth ed.). Harlow, England London New York Boston San Francisco Toronto Sydney: Pearson. ISBN   978-1-292-13414-7.
  6. "Reductive elimination", Wikipedia, 2023-02-12, retrieved 2024-11-05
  7. "Reductive elimination", Wikipedia, 2023-02-12, retrieved 2024-11-05
  8. "Associative substitution", Wikipedia, 2022-03-08, retrieved 2024-11-05
  9. "Associative substitution", Wikipedia, 2022-03-08, retrieved 2024-11-05
  10. "Associative substitution", Wikipedia, 2022-03-08, retrieved 2024-11-05