Antiaromaticity is a chemical property of a cyclic molecule with a π electron system that has higher energy, i.e., it is less stable due to the presence of 4n delocalised (π or lone pair) electrons in it, as opposed to aromaticity. Unlike aromatic compounds, which follow Hückel's rule ([4n+2] π electrons) [1] and are highly stable, antiaromatic compounds are highly unstable and highly reactive. To avoid the instability of antiaromaticity, molecules may change shape, becoming non-planar and therefore breaking some of the π interactions. In contrast to the diamagnetic ring current present in aromatic compounds, antiaromatic compounds have a paramagnetic ring current, which can be observed by NMR spectroscopy.
Examples of antiaromatic compounds are pentalene (A), biphenylene (B), cyclopentadienyl cation (C). The prototypical example of antiaromaticity, cyclobutadiene, is the subject of debate, with some scientists arguing that antiaromaticity is not a major factor contributing to its destabilization. [2]
Cyclooctatetraene is an example of a molecule adopting a non-planar geometry to avoid the destabilization that results from antiaromaticity. If it were planar, it would have a single eight-electron π system around the ring, but it instead adopts a boat-like shape with four individual π bonds. [3] Because antiaromatic compounds are often short-lived and difficult to work with experimentally, antiaromatic destabilization energy is often modeled by simulation rather than by experimentation. [2]
The term 'antiaromaticity' was first proposed by Ronald Breslow in 1967 as "a situation in which a cyclic delocalisation of electrons is destabilising". [4] The IUPAC criteria for antiaromaticity are as follows: [5]
This differs from aromaticity only in the fourth criterion: aromatic molecules have 4n +2 π-electrons in the conjugated π system and therefore follow Hückel’s rule. Non-aromatic molecules are either noncyclic, nonplanar, or do not have a complete conjugated π system within the ring.
Aromatic | Antiaromatic | Non-aromatic | |
---|---|---|---|
Cyclic? | Yes | Yes | Will fail at least one of these |
Has completely conjugated system of p orbitals in ring of molecule? | Yes | Yes | |
Planar? | Yes | Yes | |
How many π electrons in the conjugated system? | 4n+2 (i.e., 2, 6, 10, …) | 4n (4, 8, 12, …) | N/A |
Having a planar ring system is essential for maximizing the overlap between the p orbitals which make up the conjugated π system. This explains why being a planar, cyclic molecule is a key characteristic of both aromatic and antiaromatic molecules. However, in reality, it is difficult to determine whether or not a molecule is completely conjugated simply by looking at its structure: sometimes molecules can distort in order to relieve strain and this distortion has the potential to disrupt the conjugation. Thus, additional efforts must be taken in order to determine whether or not a certain molecule is genuinely antiaromatic. [6]
An antiaromatic compound may demonstrate its antiaromaticity both kinetically and thermodynamically. As will be discussed later, antiaromatic compounds experience exceptionally high chemical reactivity. Being highly reactive is not "indicative" of an antiaromatic compound, but merely suggests that the compound could be antiaromatic. An antiaromatic compound may also be recognized thermodynamically by measuring the energy of the cyclic conjugated π electron system. In an antiaromatic compound, the amount of conjugation energy in the molecule will be significantly higher than in an appropriate reference compound. [7]
In reality, it is recommended that one analyze the structure of a potentially antiaromatic compound extensively before declaring that it is indeed antiaromatic. If an experimentally determined structure of the molecule in question does not exist, a computational analysis must be performed. The potential energy of the molecule should be probed for various geometries in order to assess any distortion from a symmetric planar conformation. [6] This procedure is recommended because there have been multiple instances in the past where molecules which appear to be antiaromatic on paper turn out to be not truly so in actuality. The most famous (and heavily debated) of these molecules is cyclobutadiene, as is discussed later.
Examples of antiaromatic compounds are pentalene (A), biphenylene (B), cyclopentadienyl cation (C). The prototypical example of antiaromaticity, cyclobutadiene, is the subject of debate, with some scientists arguing that antiaromaticity is not a major factor contributing to its destabilization. [2] Cyclooctatetraene appears at first glance to be antiaromatic, but is an excellent example of a molecule adopting a non-planar geometry to avoid the destabilization that results from antiaromaticity. [3] Because antiaromatic compounds are often short-lived and difficult to work with experimentally, antiaromatic destabilization energy is often modeled by simulation rather than by experimentation. [2]
The paramagnetic ring current resulting from the electron delocalization in antiaromatic compounds can be observed by NMR. This ring current leads to a deshielding (downfield shift) of nuclei inside the ring and a shielding (upfield shift) of nuclei outside the ring. [12]annulene is an antiaromatic hydrocarbon that is large enough to have protons both inside and outside of the ring. The chemical shift for the protons outside its ring is 5.91 ppm and that for the protons inside the ring is 7.86 ppm, compared to the normal range of 4.5-6.5 ppm for nonaromatic alkenes. This effect is of a smaller magnitude than the corresponding shifts in aromatic compounds. [8]
Many aromatic and antiaromatic compounds (benzene and cyclobutadiene) are too small to have protons inside of the ring, where shielding and deshielding effects can be more diagnostically useful in determining if a compound is aromatic, antiaromatic, or nonaromatic. Nucleus Independent Chemical Shift (NICS) analysis is a method of computing the ring shielding (or deshielding) at the center of a ring system to predict aromaticity or antiaromaticity. A negative NICS value is indicative of aromaticity and a positive value is indicative of antiaromaticity. [9]
While there are multitudes of molecules in existence which would appear to be antiaromatic on paper, the number of molecules that are antiaromatic in actuality is considerably less. This is compounded by the fact that one cannot typically make derivatives of antiaromatic molecules by adding more antiaromatic hydrocarbon rings, etc. because the molecule typically loses either its planar nature or its conjugated system of π-electrons and becomes nonaromatic. [10] In this section, only examples of antiaromatic compounds which are non-disputable are included.
Pentalene is an antiaromatic compound which has been well-studied both experimentally and computationally for decades. It is dicyclic, planar and has eight π-electrons, fulfilling the IUPAC definition of antiaromaticity. Pentalene’s dianionic and dicationic states are aromatic, as they follow Hückel’s 4n +2 π-electron rule. [11]
Like its relative [12]annulene, hexadehydro-[12]annulene is also antiaromatic. Its structure has been studied computationally via ab initio and density functional theory calculations and is confirmed to be antiaromatic. [12]
Cyclobutadiene is a classic textbook example of an antiaromatic compound. It is conventionally understood to be planar, cyclic, and have 4 π electrons (4n for n=1) in a conjugated system.
However, it has long been questioned if cyclobutadiene is genuinely antiaromatic and recent discoveries have suggested that it may not be. Cyclobutadiene is particularly destabilized and this was originally attributed to antiaromaticity. However, cyclobutadiene adopts more double bond character in two of its parallel bonds than others and the π electrons are not delocalized between the two double-bond-like bonds, giving it a rectangular shape as opposed to a regular square. [3] As such, cyclobutadiene behaves like two discrete alkenes joined by two single bonds, and is therefore non-aromatic rather than antiaromatic.
Despite the lack of this π-antiaromatic destabilization effect, none of its 4n π-electron relatives (cyclooctatetraene, etc.) had even close to as much destabilization, suggesting there was something more going on in the case of cyclobutadiene. It was found that a combination of angle strain, torsional strain, and Pauli repulsion leads to the extreme destabilization experienced in this molecule. [2]
This discovery is awkward in that it contradicts basic teachings of antiaromaticity. At this point of time, it is presumed that cyclobutadiene will continue to be used to introduce the concept of antiaromaticity in textbooks as a matter of convenience, even though classifying it as antiaromatic technically may not be accurate.
The cyclopentadienyl cation is another textbook example of an antiaromatic compound. It is conventionally understood to be planar, cyclic, and have 4 π electrons (4n for n=1) in a conjugated system.
However, it has long been questioned if the cyclopentadienyl cation is genuinely antiaromatic and recent discoveries have suggested that it may not be. The lowest-energy singlet state is antiaromatic, but the lowest-energy triplet state is aromatic due to Baird's rule, and research in 2007 showed the triplet state to be the ground state. [13]
Cyclooctatetraene is another example of a molecule which is not antiaromatic, even though it might initially appear to be so. Cyclooctatetraene assumes a tub (i.e., boat-like) conformation. As it is not planar, even though it has 4n π-electrons, these electrons are not delocalized and conjugated. The molecule is therefore non-aromatic. [3]
Antiaromatic compounds, often being very unstable, can be highly reactive in order to relieve the antiaromatic destabilization. Cyclobutadiene, for example, rapidly dimerizes with no potential energy barrier via a 2 + 2 cycloaddition reaction to form tricyclooctadiene. [14] While the antiaromatic character of cyclobutadiene is the subject of debate, the relief of antiaromaticity is usually invoked as the driving force of this reaction.
Antiaromaticity can also have a significant effect on pKa. The linear compound propene has a pKa of 44, which is relatively acidic for an sp3 carbon center because the resultant allyl anion can be resonance stabilized. The analogous cyclic system appears to have even more resonance stabilized, as the negative charge can be delocalized across three carbons instead of two. However, the cyclopropenyl anion has 4 π electrons in a cyclic system and in fact has a substantially higher pKa than 1-propene because it is antiaromatic and thus destabilized. [3] Because antiaromatic compounds are often short-lived and difficult to work with experimentally, antiaromatic destabilization energy is often modeled by simulation rather than by experimentation. [2]
Some antiaromatic compounds are stable, especially larger cyclic systems (in which the antiaromatic destabilization is not as substantial). For example, the aromatic species 1 can be reduced to 2 with a relatively small penalty for forming an antiaromatic system. The antiaromatic 2 does revert to the aromatic species 1 over time by reacting with oxygen in the air because the aromaticity is preferred. [15]
The loss of antiaromaticity can sometimes be the driving force of a reaction. In the following keto-enol tautomerization, the product enol is more stable than the original ketone even though the ketone contains an aromatic benzene moiety (blue). However, there is also an antiaromatic lactone moiety (green). The relief of antiaromatic destabilization provides a driving force that outweighs even the loss of an aromatic benzene. [16]
Aromatic compounds or arenes are organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:
In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.
In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.
Cyclobutadiene is an organic compound with the formula C4H4. It is very reactive owing to its tendency to dimerize. Although the parent compound has not been isolated, some substituted derivatives are robust and a single molecule of cyclobutadiene is quite stable. Since the compound degrades by a bimolecular process, the species can be observed by matrix isolation techniques at temperatures below 35 K. It is thought to adopt a rectangular structure.
Annulenes are monocyclic hydrocarbons that contain the maximum number of non-cumulated or conjugated double bonds ('mancude'). They have the general formula CnHn (when n is an even number) or CnHn+1 (when n is an odd number). The IUPAC accepts the use of 'annulene nomenclature' in naming carbocyclic ring systems with 7 or more carbon atoms, using the name '[n]annulene' for the mancude hydrocarbon with n carbon atoms in its ring, though in certain contexts (e.g., discussions of aromaticity for different ring sizes), smaller rings (n = 3 to 6) can also be informally referred to as annulenes. Using this form of nomenclature 1,3,5,7-cyclooctatetraene is [8]annulene and benzene is [6]annulene (and occasionally referred to as just 'annulene').
In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.
Pentalene is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings. It has chemical formula C8H6. It is antiaromatic, because it has 4n π electrons where n is any integer. For this reason it dimerizes even at temperatures as low as −100 °C. The derivative 1,3,5-tri-tert-butylpentalene was synthesized in 1973. Because of the tert-butyl substituents this compound is thermally stable. Pentalenes can also be stabilized by benzannulation for example in the compounds benzopentalene and dibenzopentalene.
Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.
1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.
Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.
Cyclooctadecanonaene or [18]annulene is an organic compound with chemical formula C
18H
18. It belongs to the class of highly conjugated compounds known as annulenes and is aromatic. The usual isomer that [18]annulene refers to is the most stable one, containing six interior hydrogens and twelve exterior ones, with the nine formal double bonds in the cis,trans,trans,cis,trans,trans,cis,trans,trans configuration. It is reported to be a red-brown crystalline solid.
A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.
An aromatic ring current is an effect observed in aromatic molecules such as benzene and naphthalene. If a magnetic field is directed perpendicular to the plane of the aromatic system, a ring current is induced in the delocalized π electrons of the aromatic ring. This is a direct consequence of Ampère's law; since the electrons involved are free to circulate, rather than being localized in bonds as they would be in most non-aromatic molecules, they respond much more strongly to the magnetic field.
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.
In chemistry, the cyclopentadienyl anion or cyclopentadienide is an aromatic species with a formula of [C
5H
5]−
and abbreviated as Cp−. It is formed by the deprotonation of cyclopentadiene. The cyclopentadienyl anion is a ligand which binds to a metal in organometallic chemistry.
In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the aromatic character in Hückel systems. The nodal plane of the orbitals, viewed as a ribbon, is a Möbius strip, rather than a cylinder, hence the name. The pattern of orbital energies is given by a rotated Frost circle (with the edge of the polygon on the bottom instead of a vertex), so systems with 4n electrons are aromatic, while those with 4n + 2 electrons are anti-aromatic/non-aromatic. Due to the incrementally twisted nature of the orbitals of a Möbius aromatic system, stable Möbius aromatic molecules need to contain at least 8 electrons, although 4-electron Möbius aromatic transition states are well known in the context of the Dewar-Zimmerman framework for pericyclic reactions. Möbius molecular systems were considered in 1964 by Edgar Heilbronner by application of the Hückel method, but the first such isolable compound was not synthesized until 2003 by the group of Rainer Herges. However, the fleeting trans-C9H9+ cation, one conformation of which is shown on the right, was proposed to be a Möbius aromatic reactive intermediate in 1998 based on computational and experimental evidence.
Cyclotetradecaheptaene, often referred to as [14]annulene, is a hydrocarbon with molecular formula C14H14, which played an important role in the development of criteria (Hückel's rule) for aromaticity, a stabilizing property of central importance in physical organic chemistry. It forms dark-red needle-like crystals.
In organic chemistry, Baird's rule estimates whether the lowest triplet state of planar, cyclic structures will have aromatic properties or not. The quantum mechanical basis for its formulation was first worked out by physical chemist N. Colin Baird at the University of Western Ontario in 1972.
Bicalicene is polycyclic hydrocarbon with chemical formula C16H8, composed of two cyclopentadiene and two cyclopropene rings linked into a larger eight-membered ring. There are two isomers: cis-bicalicene and trans-bicalicene. It is a dimer of calicene.
Bicyclo[6.2.0]decapentaene is a bicyclic organic compound and an isomer of naphthalene and azulene.