Cyclododecahexaene

Last updated
Cyclododecahexaene
Cyclododecahexaene.svg
Tri-trans isomer of cyclododecahexaene
Names
Preferred IUPAC name
(1Z,3E,5Z,7E,9Z,11E)-Cyclododeca-1,3,5,7,9,11-hexaene
Other names
[12]annulene
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C12H12/c1-2-4-6-8-10-12-11-9-7-5-3-1/h1-12H
    Key: KWULAWFQRPFWEH-UHFFFAOYSA-N
  • EZEZEZEZ:InChI=1S/C12H12/c1-2-4-6-8-10-12-11-9-7-5-3-1/h1-12H/b2-1-,3-1-,4-2+,5-3+,6-4+,7-5+,8-6-,9-7-,10-8-,11-9-,12-10+,12-11+
    Key: KWULAWFQRPFWEH-FWEBNODZSA-N
  • C1=CC=CC=CC=CC=CC=C1
  • EZEZEZEZ:C\1=C/C=C\C=C\C=C/C=C\C=C1
Properties
C12H12
Molar mass 156.228 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclododecahexaene or [12]annulene (C
12
H
12
) is a member of the series of annulenes with some interest in organic chemistry with regard to the study of aromaticity. [1] Cyclododecahexaene is non-aromatic due to the lack of planarity of the structure.[ citation needed ] On the other hand the dianion with 14 electrons is a Hückel aromat and more stable.

According to in silico experiments the tri-trans isomer is expected to be the most stable, followed by the 1,7-ditrans and the all cis-isomers (+1 kcal/mol) and by the 1,5-ditrans isomer (+5 kcal/mol).

The first [12]annulene with sym-tri-trans configuration was synthesized in 1970 from a tricyclic precursor by photolysis at low temperatures. On heating the compound rearranges to a bicyclic [6.4.0] isomer. Reducing the compound at low temperatures allowed analysis of the dianion by proton NMR with the inner protons resonating at -4.5 ppm relative to TMS, evidence of an aromatic diamagnetic ring current. [2]

[12]annulene synthesis Cyclododecahexaene synthesis.svg
[12]annulene synthesis

In one study the 1,7-ditrans isomer is generated at low temperatures in THF by dehydrohalogenation of a hexabromocyclododecane with potassium tert-butoxide. Reduction of this compound at low temperature with caesium metal leads first to the radical anion and then to the dianion. The chemical shift for the internal protons in this compound is with +0.2 ppm much more modest than in the tri-trans isomer.

[12]annulene synthesis 12annulene2006.png
[12]annulene synthesis

Heating the radical ion solution to room temperature leads to loss of one equivalent of hydrogen and formation of the heptalene radical anion.

Related Research Articles

In organic chemistry, a carbanion is an anion in which carbon is negatively charged.

<span class="mw-page-title-main">Hückel's rule</span> Method of determining aromaticity in organic molecules

In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.

Antiaromaticity is a chemical property of a cyclic molecule with a π electron system that has higher energy, i.e., it is less stable due to the presence of 4n delocalised electrons in it, as opposed to aromaticity. Unlike aromatic compounds, which follow Hückel's rule and are highly stable, antiaromatic compounds are highly unstable and highly reactive. To avoid the instability of antiaromaticity, molecules may change shape, becoming non-planar and therefore breaking some of the π interactions. In contrast to the diamagnetic ring current present in aromatic compounds, antiaromatic compounds have a paramagnetic ring current, which can be observed by NMR spectroscopy.

<span class="mw-page-title-main">Pentalene</span> Chemical compound

Pentalene is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings. It has chemical formula C8H6. It is antiaromatic, because it has 4n π electrons where n is any integer. For this reason it dimerizes even at temperatures as low as −100 °C. The derivative 1,3,5-tri-tert-butylpentalene was synthesized in 1973. Because of the tert-butyl substituents this compound is thermally stable. Pentalenes can also be stabilized by benzannulation for example in the compounds benzopentalene and dibenzopentalene.

<span class="mw-page-title-main">Carbo-mer</span> Organic chemical compound

In organic chemistry, a carbo-mer (often carbo-mer or carbomer) is an expanded molecule obtained by insertion of C2 units into a given molecule. Carbo-mers differ from their templates in size but not in symmetry when each C–C single bond is replaced by an alkyne bond C-C≡C-C, each C=C double bond is replaced by an allene bond C=C=C=C, and each C≡C triple bond is replaced by C≡C-C≡C. The size of the carbo-mer continues to increase when more C2 units are inserted, so carbo-mers are also called carbon-molecules, where "n" is the number of acetylene or allene groups in an n-expansion unit. This concept, devised by Rémi Chauvin in 1995, is aimed at introducing new chemical properties for existing chemical motifs.

<span class="mw-page-title-main">Conformational isomerism</span> Different molecular structures formed only by rotation about single bonds

In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted just by rotations about formally single bonds. While any two arrangements of atoms in a molecule that differ by rotation about single bonds can be referred to as different conformations, conformations that correspond to local minima on the potential energy surface are specifically called conformational isomers or conformers. Conformations that correspond to local maxima on the energy surface are the transition states between the local-minimum conformational isomers. Rotations about single bonds involve overcoming a rotational energy barrier to interconvert one conformer to another. If the energy barrier is low, there is free rotation and a sample of the compound exists as a rapidly equilibrating mixture of multiple conformers; if the energy barrier is high enough then there is restricted rotation, a molecule may exist for a relatively long time period as a stable rotational isomer or rotamer. When the time scale for interconversion is long enough for isolation of individual rotamers, the isomers are termed atropisomers. The ring-flip of substituted cyclohexanes constitutes another common form of conformational isomerism.

A 1,2-rearrangement or 1,2-migration or 1,2-shift or Whitmore 1,2-shift is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1,2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In the example below the substituent R moves from carbon atom C2 to C3.

<span class="mw-page-title-main">Radical anion</span> Free radical species

In organic chemistry, a radical anion is a free radical species that carries a negative charge. Radical anions are encountered in organic chemistry as reduced derivatives of polycyclic aromatic compounds, e.g. sodium naphthenide. An example of a non-carbon radical anion is the superoxide anion, formed by transfer of one electron to an oxygen molecule. Radical anions are typically indicated by .

<span class="mw-page-title-main">Cyclodecapentaene</span> Chemical compound

Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.

<span class="mw-page-title-main">Corannulene</span> Chemical compound

Corannulene is a polycyclic aromatic hydrocarbon with chemical formula C20H10. The molecule consists of a cyclopentane ring fused with 5 benzene rings, so another name for it is [5]circulene. It is of scientific interest because it is a geodesic polyarene and can be considered a fragment of buckminsterfullerene. Due to this connection and also its bowl shape, corannulene is also known as a buckybowl. Buckybowls are fragments of buckyballs. Corannulene exhibits a bowl-to-bowl inversion with an inversion barrier of 10.2 kcal/mol (42.7 kJ/mol) at −64 °C.

<span class="mw-page-title-main">Cyclooctadecanonaene</span> Chemical compound

Cyclooctadecanonaene or [18]annulene is an organic compound with chemical formula C
18
H
18
. It belongs to the class of highly conjugated compounds known as annulenes and is aromatic. The usual isomer that [18]annulene refers to is the most stable one, containing six interior hydrogens and twelve exterior ones, with the nine formal double bonds in the cis,trans,trans,cis,trans,trans,cis,trans,trans configuration. It is reported to be a red-brown crystalline solid.

<span class="mw-page-title-main">Annulyne</span>

Annulynes or dehydroannulenes are conjugated monocyclic hydrocarbons with alternating single and double bonds in addition to at least one triple bond.

<span class="mw-page-title-main">Aromatic ring current</span> Electric current observed in aromatic compounds

An aromatic ring current is an effect observed in aromatic molecules such as benzene and naphthalene. If a magnetic field is directed perpendicular to the plane of the aromatic system, a ring current is induced in the delocalized π electrons of the aromatic ring. This is a direct consequence of Ampère's law; since the electrons involved are free to circulate, rather than being localized in bonds as they would be in most non-aromatic molecules, they respond much more strongly to the magnetic field.

<span class="mw-page-title-main">Homoaromaticity</span> Organic molecular structure

Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.

<span class="mw-page-title-main">Deltic acid</span> Chemical compound

Deltic acid is a chemical substance with the chemical formula C3O(OH)2. It can be viewed as a ketone and double enol of cyclopropene. At room temperature, it is a stable white solid, soluble in diethyl ether, that decomposes between 140 °C and 180 °C, and reacts slowly with water.

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C5H+5(Cp+) and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons. As a result, boroles exhibit unique electronic properties not found in other metalloles.

<span class="mw-page-title-main">Birch reduction</span> Organic reaction used to convert arenes to cyclohexadienes

The Birch reduction is an organic reaction that is used to convert arenes to 1,4-cyclohexadienes. The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent with an alkali metal and a proton source. Unlike catalytic hydrogenation, Birch reduction does not reduce the aromatic ring all the way to a cyclohexane.

Cyclotetradecaheptaene, often referred to as [14]annulene, is a hydrocarbon with molecular formula C14H14, which played an important role in the development of criteria (Hückel's rule) for aromaticity, a stabilizing property of central importance in physical organic chemistry. It forms dark-red needle-like crystals.

<span class="mw-page-title-main">Carborane acid</span> Class of chemical compounds

Carborane acidsH(CXB
11
Y
5
Z
6
)
(X, Y, Z = H, Alk, F, Cl, Br, CF3) are a class of superacids, some of which are estimated to be at least one million times stronger than 100% pure sulfuric acid in terms of their Hammett acidity function values (H0 ≤ –18) and possess computed pKa values well below –20, establishing them as some of the strongest known Brønsted acids. The best-studied example is the highly chlorinated derivative H(CHB
11
Cl
11
)
. The acidity of H(CHB
11
Cl
11
)
was found to vastly exceed that of triflic acid, CF
3
SO
3
H
, and bistriflimide, (CF
3
SO
2
)
2
NH
, compounds previously regarded as the strongest isolable acids.

<span class="mw-page-title-main">Diethynylbenzene dianion</span> Group of isomeric chemical compounds which are strong bases

In organic chemistry, a diethynylbenzene dianion is an anion consisting of two ethynyl anions as substituents on a benzene ring. With the chemical formula C
6
H
4
C2−
4
, three positional isomers are possible, differing in the relative positions of the two substituents around the ring:

References

  1. Kiesewetter, Matthew K.; Gard, Matthew N.; Reiter, Richard C.; Stevenson, Cheryl D. (2006). "Reactions Involving Di-trans-[12]Annulenes". Journal of the American Chemical Society. 128 (49): 15618–15624. doi:10.1021/ja062846u. PMID   17147369.
  2. Oth, J. F. M.; Schröder, G. (1971). "Annulenes. Part XII. The dianion of [12]annulene". J. Chem. Soc. B: 904–907. doi:10.1039/j29710000904. ISSN   0045-6470.