Cyclopropene

Last updated
Cyclopropene
Skeletal formula of cyclopropene Cyclopropene 2D skeletal.svg
Skeletal formula of cyclopropene
Skeletal formula of cyclopropene with implicit hydrogens shown Cyclopropene.png
Skeletal formula of cyclopropene with implicit hydrogens shown
Ball and stick model of cyclopropene Cyclopropene-3D-balls.png
Ball and stick model of cyclopropene
Names
Preferred IUPAC name
Cyclopropene [1]
Identifiers
3D model (JSmol)
ChemSpider
MeSH cyclopropene
PubChem CID
UNII
  • InChI=1S/C3H4/c1-2-3-1/h1-2H,3H2 X mark.svgN
    Key: OOXWYYGXTJLWHA-UHFFFAOYSA-N X mark.svgN
  • C1C=C1
Properties
C3H4
Molar mass 40.065 g·mol−1
Boiling point −36 °C (−33 °F; 237 K)
Thermochemistry
51.9-53.9 J K−1 mol−1
-2032--2026 kJ mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cyclopropene is an organic compound with the formula C3H4. It is the simplest cycloalkene. Because the ring is highly strained, cyclopropene is difficult to prepare and highly reactive. This colorless gas has been the subject for many fundamental studies of bonding and reactivity. [2] It does not occur naturally, but derivatives are known in some fatty acids. Derivatives of cyclopropene are used commercially to control ripening of some fruit.

Contents

Structure and bonding

The molecule has a triangular structure. The reduced length of the double bond compared to a single bond causes the angle opposite the double bond to narrow to about 51° from the 60° angle found in cyclopropane. [3] As with cyclopropane, the carbon–carbon bonding in the ring has increased p character: the alkene carbon atoms use sp2.68 hybridization for the ring. [4]

Synthesis of cyclopropene and derivatives

Early syntheses

The first confirmed synthesis of cyclopropene, carried out by Dem'yanov and Doyarenko, involved the thermal decomposition of trimethylcyclopropylammonium hydroxide over platinized clay at approximately 300 °C. [5] This reaction produces mainly trimethylamine and dimethylcyclopropyl amine, together with about 5% of cyclopropene. Later Schlatter improved the pyrolytic reaction conditions using platinized asbestos as a catalyst at 320–330 °C and obtained cyclopropene in 45% yield. [6]

Cyclopropene can also be obtained in about 1% yield by thermolysis of the adduct of cycloheptatriene and dimethyl acetylenedicarboxylate. [7]

Modern syntheses from allyl chlorides

Allyl chloride undergoes dehydrohalogenation upon treatment with the base sodium amide at 80 °C to produce cyclopropene in about 10% yield. [8]

CH2=CHCH2Cl + NaNH2 → C3H4 + NaCl + NH3

The major byproduct of the reaction is allylamine. Adding allyl chloride to sodium bis(trimethylsilyl)amide in boiling toluene over a period of 45–60 minutes produces the targeted compound in about 40% yield with an improvement in purity: [9]

CH2=CHCH2Cl + NaN(TMS)2 → C3H4 + NaCl + NH(TMS)2

1-Methylcyclopropene is synthesized similarly but at room temperature from methallylchloride using phenyllithium as the base: [10]

CH2=C(CH3)CH2Cl + LiC6H5 CH3−C3H3 + LiCl + C6H6

Syntheses of derivatives

Treatment of nitrocyclopropanes with sodium methoxide eliminates the nitrite, giving the respective cyclopropene derivative. The synthesis of purely aliphatic cyclopropenes was first illustrated by the copper-catalyzed additions of carbenes to alkynes. In the presence of a copper catalyst, ethyl diazoacetate reacts with acetylenes to give cyclopropenes. 1,2-Dimethylcyclopropene-3-carboxylate arises via this method from 2-butyne. Copper, as copper sulfate and copper dust, are among the more popular forms of copper used to promote such reactions. Rhodium acetate has also been used.

Reactions of cyclopropene

Studies on cyclopropene mainly focus on the consequences of its high ring strain. At 425 °C, cyclopropene isomerizes to methylacetylene (propyne).

C3H4 → H3CC≡CH

Attempted fractional distillation of cyclopropene at –36 °C (its predicted boiling point) results in polymerization. The mechanism is assumed to be a free-radical chain reaction, and the product, based on NMR spectra, is thought to be polycyclopropane.

Cyclopropene undergoes the Diels–Alder reaction with cyclopentadiene to give endo-tricyclo[3.2.1.02,4]oct-6-ene. This reaction is commonly used to check for the presence of cyclopropene, following its synthesis. [9]

CyclopropeneDielsAlder.PNG

Related Research Articles

<span class="mw-page-title-main">Diene</span> Covalent compound that contains two double bonds

In organic chemistry, a diene ; also diolefin, dy-OH-lə-fin) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alkene units, with the standard prefix di of systematic nomenclature. As a subunit of more complex molecules, dienes occur in naturally occurring and synthetic chemicals and are used in organic synthesis. Conjugated dienes are widely used as monomers in the polymer industry. Polyunsaturated fats are of interest to nutrition.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp.

<span class="mw-page-title-main">Cyclopropane</span> Chemical compound

Cyclopropane is the cycloalkane with the molecular formula (CH2)3, consisting of three methylene groups (CH2) linked to each other to form a triangular ring. The small size of the ring creates substantial ring strain in the structure. Cyclopropane itself is mainly of theoretical interest but many of its derivatives - cyclopropanes - are of commercial or biological significance.

<span class="mw-page-title-main">Allyl group</span> Chemical group (–CH₂–CH=CH₂)

In organic chemistry, an allyl group is a substituent with the structural formula −CH2−HC=CH2. It consists of a methylene bridge attached to a vinyl group. The name is derived from the scientific name for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene to form a cyclopropane. It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith. It uses a methylene free radical intermediate that is delivered to both carbons of the alkene simultaneously, therefore the configuration of the double bond is preserved in the product and the reaction is stereospecific.

In retrosynthetic analysis, a synthon is a hypothetical unit within a target molecule that represents a potential starting reagent in the retroactive synthesis of that target molecule. The term was coined in 1967 by E. J. Corey. He noted in 1988 that the "word synthon has now come to be used to mean synthetic building block rather than retrosynthetic fragmentation structures". It was noted in 1998 that the phrase did not feature very prominently in Corey's 1981 book The Logic of Chemical Synthesis, as it was not included in the index. Because synthons are charged, when placed into a synthesis an uncharged form is found commercially instead of forming and using the potentially very unstable charged synthons.

An allylic rearrangement or allylic shift is an organic chemical reaction in which reaction at a center vicinal to a double bond causes the double bond to shift to an adjacent pair of atoms:

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Ring strain</span> Instability in molecules with bonds at unnatural angles

In organic chemistry, ring strain is a type of instability that exists when bonds in a molecule form angles that are abnormal. Strain is most commonly discussed for small rings such as cyclopropanes and cyclobutanes, whose internal angles are substantially smaller than the idealized value of approximately 109°. Because of their high strain, the heat of combustion for these small rings is elevated.

<span class="mw-page-title-main">Sodium bis(trimethylsilyl)amide</span> Chemical compound

Sodium bis(trimethylsilyl)amide is the organosilicon compound with the formula NaN(Si 3)2. This species, usually called NaHMDS, is a strong base used for deprotonation reactions or base-catalyzed reactions. Its advantages are that it is commercially available as a solid and it is soluble not only in ethers, such as THF or diethyl ether, but also in aromatic solvents, like benzene and toluene by virtue of the lipophilic TMS groups.

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroid insecticides and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Fluorobenzene</span> Chemical compound

Fluorobenzene is an aryl fluoride and the simplest of the fluorobenzenes, with the formula C6H5F, often abbreviated PhF. A colorless liquid, it is a precursor to many fluorophenyl compounds.

<span class="mw-page-title-main">Cyclopropanone</span> Chemical compound

Cyclopropanone is an organic compound with molecular formula (CH2)2CO consisting of a cyclopropane carbon framework with a ketone functional group. The parent compound is labile, being highly sensitive toward even weak nucleophiles. Surrogates of cyclopropanone include the ketals.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

The Buchner ring expansion is a two-step organic C-C bond forming reaction used to access 7-membered rings. The first step involves formation of a carbene from ethyl diazoacetate, which cyclopropanates an aromatic ring. The ring expansion occurs in the second step, with an electrocyclic reaction opening the cyclopropane ring to form the 7-membered ring.

<span class="mw-page-title-main">Methylenecyclopropane</span> Organic compound, (CH₂)₂C=CH₂

Methylenecyclopropane is an organic compound with the formula (CH2)2C=CH2. It is a hydrocarbon which, as the name suggests, is derived from the addition of a methylene substituent to a cyclopropane ring. It is a colourless, easily condensed gas that is used as a reagent in organic synthesis.

<span class="mw-page-title-main">Activation of cyclopropanes by transition metals</span>

In organometallic chemistry, the activation of cyclopropanes by transition metals is a research theme with implications for organic synthesis and homogeneous catalysis. Being highly strained, cyclopropanes are prone to oxidative addition to transition metal complexes. The resulting metallacycles are susceptible to a variety of reactions. These reactions are rare examples of C-C bond activation. The rarity of C-C activation processes has been attributed to Steric effects that protect C-C bonds. Furthermore, the directionality of C-C bonds as compared to C-H bonds makes orbital interaction with transition metals less favorable. Thermodynamically, C-C bond activation is more favored than C-H bond activation as the strength of a typical C-C bond is around 90 kcal per mole while the strength of a typical unactivated C-H bond is around 104 kcal per mole.

References

  1. "cyclopropene - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 27 March 2005. Identification and Related Records. Retrieved 9 October 2011.
  2. Carter, F. L.; Frampton, V. L. (1964). "Review of the Chemistry of Cyclopropene Compounds". Chemical Reviews. 64 (5): 497–525. doi:10.1021/cr60231a001.
  3. Staley, S. W.; Norden, T. D.; Su, C.-F.; Rall, M.; Harmony, M. D. (1987). "Structure of 3-cyanocyclopropene by microwave spectroscopy and ab initio molecular orbital calculations. Evidence for substituent-ring double bond interactions". J. Am. Chem. Soc. 109 (10): 2880–2884. doi:10.1021/ja00244a004.
  4. Allen, F. H. (1982). "The geometry of small rings: Molecular geometry of cyclopropene and its derivatives". Tetrahedron. 38 (5): 645–655. doi:10.1016/0040-4020(82)80206-8.
  5. Hart, Harold; Karabatsos, G. J. (1966). Advances in Alicyclic Chemistry. Vol. 1. New York and London: Academic Press Inc. p. 55. ISBN   9781483224206.
  6. Schlatter, Maurice J. (1941-06-01). "The Preparation of Cyclopropene". Journal of the American Chemical Society. 63 (6): 1733–1737. doi:10.1021/ja01851a068. ISSN   0002-7863.
  7. de Meijere, Armin, ed. (1997). Houben-Weyl. Methods of Organic Chemistry – Cyclopropanes, Authors Index, Compound Index. Vol. E 17d. Stuttgart, New York: George Thieme Verlag. pp. 2712–2713. ISBN   978-3-13-101644-7.
  8. Closs, G.L.; Krantz, K.D. (1966). "A Simple Synthesis of Cyclopropene". Journal of Organic Chemistry. 31 (2): 638. doi:10.1021/jo01340a534.
  9. 1 2 Binger, P.; Wedermann, P.; Brinker, U. H. (2000). "Cyclopropene: A New Simple Synthesis and Its Diels-Alder reaction with Cyclopentadiene". Organic Syntheses . 77: 254; Collected Volumes, vol. 10, p. 231.
  10. Clarke, T. C.; Duncan, C. D.; Magid, R. M. (1971). "An Efficient and Convenient Synthesis of 1-Methylcyclopropene". J. Org. Chem. 36 (9): 1320–1321. doi:10.1021/jo00808a041.
  11. Beaudry, R.; Watkins, C. (2001). "Use of 1-MCP on Apples". Perishable Handling Quarterly (108). University of California: 12.
  12. Trinchero, G. D.; Sozzi, G. O.; Covatta, F.; Fraschina, A. A. (May 2004). "Inhibition of ethylene action by 1-methylcyclopropene extends postharvest life of "Bartlett" pears". Postharvest Biology and Technology. 32 (2): 193–204. doi:10.1016/j.postharvbio.2003.11.009.