Preferred IUPAC name

Last updated

In chemical nomenclature, a preferred IUPAC name (PIN) is a unique name, assigned to a chemical substance and preferred among all possible names generated by IUPAC nomenclature. The "preferred IUPAC nomenclature" provides a set of rules for choosing between multiple possibilities in situations where it is important to decide on a unique name. It is intended for use in legal and regulatory situations. [1]

Contents

Preferred IUPAC names are applicable only for organic compounds, to which the IUPAC (International Union of Pure and Applied Chemistry) has the definition as compounds which contain at least a single carbon atom but no alkali, alkaline earth or transition metals and can be named by the nomenclature of organic compounds [2] (see below). Rules for the remaining organic and inorganic compounds are still under development. [3] The concept of PINs is defined in the introductory chapter and chapter 5 of the "Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013" (freely accessible), [4] which replace two former publications: the "Nomenclature of Organic Chemistry", 1979 (the Blue Book) and "A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993". The full draft version of the PIN recommendations ("Preferred names in the nomenclature of organic compounds", Draft of 7 October 2004) is also available. [5] [6]

Definitions

A preferred IUPAC name or PIN is a name that is preferred among two or more IUPAC names. An IUPAC name is a systematic name that meets the recommended IUPAC rules. IUPAC names include retained names. A general IUPAC name is any IUPAC name that is not a "preferred IUPAC name". A retained name is a traditional or otherwise often used name, usually a trivial name, that may be used in IUPAC nomenclature. [7]

Since systematic names often are not human-readable a PIN may be a retained name. Both "PINs" and "retained names" have to be chosen (and established by IUPAC) explicitly, unlike other IUPAC names, which automatically arise from IUPAC nomenclatural rules. Thus, the PIN is sometimes the retained name (e.g., phenol and acetic acid, instead of benzenol and ethanoic acid), while in other cases, the systematic name was chosen over a very common retained name (e.g., propan-2-one, instead of acetone).

A preselected name is a preferred name chosen among two or more names for parent hydrides or other parent structures that do not contain carbon (inorganic parents). "Preselected names" are used in the nomenclature of organic compounds as the basis for PINs for organic derivatives. They are needed for derivatives of organic compounds that do not contain carbon themselves. [7] A preselected name is not necessarily a PIN in inorganic chemical nomenclature.

Basic principles

The systems of chemical nomenclature developed by the International Union of Pure and Applied Chemistry (IUPAC) have traditionally concentrated on ensuring that chemical names are unambiguous, that is that a name can only refer to one substance. However, a single substance can have more than one acceptable name, like toluene, which may also be correctly named as "methylbenzene" or "phenylmethane". Some alternative names remain available as "retained names" for more general contexts. For example, tetrahydrofuran remains an unambiguous and acceptable name for the common organic solvent, even if the preferred IUPAC name is "oxolane". [8]

The nomenclature goes: [9]

The following are available, but not given special preference: [10]

Retained names

The number of retained non-systematic, trivial names of simple organic compounds (for example formic acid and acetic acid) has been reduced considerably for preferred IUPAC names, although a larger set of retained names is available for general nomenclature. The traditional names of simple monosaccharides, α-amino acids and many natural products have been retained as preferred IUPAC names; in these cases the systematic names may be very complicated and virtually never used. The name for water itself is a retained IUPAC name.

Scope of the nomenclature for organic compounds

In IUPAC nomenclature, all compounds containing carbon atoms are considered organic compounds. Organic nomenclature only applies to organic compounds containing elements from the Groups 13 through 17. Organometallic compounds of the Groups 1 through 12 are not covered by organic nomenclature. [7] [11]

Notes and references

  1. Preferred names in the nomenclature of organic compounds, International Union of Pure and Applied Chemistry, retrieved 2017-08-12.
  2. Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  3. Hartshorn, R. M.; Hellwich, K.-H.; Yerin, A.; Damhus, T.; Hutton, A. T. (2015). "Brief Guide to the Nomenclature of Inorganic Chemistry" (PDF). Pure and Applied Chemistry. 87 (9–10): 1039–1049. doi:10.1515/pac-2014-0718. hdl: 10092/12053 . S2CID   100897636 . Retrieved 20 February 2019.
  4. Favre, Henri A.; Powell, Warren H. (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. doi:10.1039/9781849733069. ISBN   978-1-84973-306-9.
  5. IUPAC Provisional Recommendations 2004 CONTENTS
  6. IUPAC Provisional Recommendations 2004 Complete draft version
  7. 1 2 3 IUPAC Provisional Recommendations 2004, par. 10–12, Chapter 1
  8. IUPAC Provisional Recommendations 2004, Rule P-53.2.2, Chapter5
  9. IUPAC Provisional Recommendations 2004, P-51, Chap P-5
  10. IUPAC Provisional Recommendations 2004, P-51, Chap P-5
  11. IUPAC Provisional Recommendations 2004, P-69.0 Organometallic compounds

Further reading

Related Research Articles

<span class="mw-page-title-main">Functional group</span> Group of atoms giving a molecule characteristic properties

In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are also called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.

In organic chemistry, butyl is a four-carbon alkyl radical or substituent group with general chemical formula −C4H9, derived from either of the two isomers (n-butane and isobutane) of butane.

In organic chemistry, a substituent is one or a group of atoms that replaces atoms, thereby becoming a moiety in the resultant (new) molecule.

Chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

Azetidine is a saturated heterocyclic organic compound containing three carbon atoms and one nitrogen atom. It is a liquid at room temperature with a strong odor of ammonia and is strongly basic compared to most secondary amines.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">Methylidyne radical</span> Chemical compound

Methylidyne, or (unsubstituted) carbyne, is an organic compound whose molecule consists of a single hydrogen atom bonded to a carbon atom. It is the parent compound of the carbynes, which can be seen as obtained from it by substitution of other functional groups for the hydrogen.

The suffix -oate is the IUPAC nomenclature used in organic chemistry to form names of compounds formed from carboxylic acids. They are of two types:

In chemical nomenclature, nor- is a prefix to name a structural analog that can be derived from a parent compound by the removal of one carbon atom along with the accompanying hydrogen atoms. The nor-compound can be derived by removal of a CH
3
, CH
2
, or CH group, or of a C atom. The "nor-" prefix also includes the elimination of a methylene bridge in a cyclic parent compound, followed by ring contraction.. The terms desmethyl- or demethyl- are synonyms of "nor-".

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Propadiene</span> Organic compound (H2C=C=CH2)

Propadiene or allene is the organic compound with the formula H2C=C=CH2. It is the simplest allene, i.e. a compound with two adjacent carbon double bonds. As a constituent of MAPP gas, it has been used as a fuel for specialized welding.

In organic chemistry, Hantzsch–Widman nomenclature, also called the extended Hantzsch–Widman system, is a type of systematic chemical nomenclature used for naming heterocyclic parent hydrides having no more than ten ring members. Some common heterocyclic compounds have retained names that do not follow the Hantzsch–Widman pattern.

<span class="mw-page-title-main">Parent structure</span> Chemical structure from which derivatives can be visualized

In chemistry, a parent structure is the structure of an unadorned ion or molecule from which derivatives can be visualized. Parent structures underpin systematic nomenclature and facilitate classification. Fundamental parent structures have one or no functional groups and often have various types of symmetry. Benzene is a chemical itself consisting of a hexagonal ring of carbon atoms with a hydrogen atom attached to each, and is the parent of many derivatives that have substituent atoms or groups replacing one or more of the hydrogens. Some parents are rare or nonexistent themselves, as in the case of porphine, though many simple and complex derivatives are known.

In chemical nomenclature, a descriptor is a notational prefix placed before the systematic substance name, which describes the configuration or the stereochemistry of the molecule. Some of the listed descriptors should not be used in publications, as they no longer accurately correspond with the recommendations of the IUPAC. Stereodescriptors are often used in combination with locants to clearly identify a chemical structure unambiguously.

<span class="mw-page-title-main">Selenopyrylium</span> Chemical compound

Selenopyrylium is an aromatic heterocyclic compound consisting of a six-membered ring with five carbon atoms and a positively charged selenium atom.

In organic chemistry, alkylidene is a general term for divalent functional groups of the form R2C=, where each R is an alkane or hydrogen. They can be considered the functional group corresponding to mono- or disubstituted divalent carbenes, or as the result of removing two hydrogen atoms from the same carbon atom in an alkane.